23 Intermediate class

The class construct has many ramifications and extensions, a few of which are
introduced in this chapter.

Section 23.1 looks at the problem of data that need to be shared by all instances of a
class. Shared data are quite common. For example, the air traffic control program in
Chapter 20 had a minimum height for the aircraft defined by a constant; but it might be
reasonable to have the minimum height defined by a variable (at certain times of the
day, planes might be required to make their approaches to the auto lander somewhat
higher say 1000 feet instead of 600 feet). The minimum height would then have to be a
variable. Obviously, all the aircraft are subject to the same height restriction and so
need to have access to the same variable. The minimum height variable could be made
a global; but that doesn't reflect its use. If really is something that belongs to the
aircraft and so should somehow belong to class Ai rcraft . C++ classeshave st ati c”
members; these let programmers define such shared data.

Section 23.2 introduces "f r i ends". One of the motivations for classes was the need
to build privacy walls around data and specialist housekeeping functions. Such walls
prevent misuse of data such as can occur with simple structs that are universally
accessible. Private data and functions can only be used within the member functions of
the class. But sometimes you want to slightly relax the protection. Y ou want private
data and functions to be used within member functions, and in addition in a few other
functions that are explicitly named. These additional functions may be global
functions, or they may be the member functions of some second class. Such functions
arenominated as "f ri ends" in aclass declaration. (The author of a class nominates the
friendsif any. You can't come along later and try to make some new function a "friend"
of an existing class because, obviously, this would totally defeat the security
mechanisms.) There aren't many places where you need friend functions. They
sometimes appear when you have a cluster of separate classes whose instances need to
work together closely. Then you may get situations where there a class has some data
members or functions that you would like to make accessible to instances of other
members of the class cluster without also making them accessible to general clients.

23

"static" class
members for shared
data

Friends — sneaking
through the walls of
privacy



788

Intermediate class

Iterators

Operator functions

Resource manager
classes

Destructor functions
for resource manager
classes

Operator = and
resource manager
classes

Section 23.3 introduces iterators. Iterator classes are associated with collection
classes like those presented in Chapter 21. An Iterator is very likely to be a"friend" of
the collection class with which it is associated. Iterators help you organize code where
you want to go through a collection looking at each stored item in turn.

My own view isthat for the most part "operator functions', the topic of Section 23.4,
are an overrated cosmetic change to the ordinary function call syntax. Remember how
class Nunber in Chapter 19 had functionslike Mul ti pl y() (sothe code had thingslike
a.Mil tiply(b) witha andb instances of class Nunber)? With operator functions,
you can make that a * b. Redefining the meaning of operator * allows you to pretty
up such code.

Such cosmetic uses aren't that important. But there are afew cases whereit is useful
to redefine operators. For instance, you often want to extend the interface to the
iostream library so that you can write code like Nunber x; ...cout << "x = " << X
<< endl . This can be done by defining a new global function involving the <<
operator. Another special case is the assignment operator, operator =; redefinition of
operator = isexplained in the next section on resource manager classes. Other operators
that you may need to change are the pointer dereference operator, - > and the new
operator. However, the need to redefine the meanings of these operators only occursin
more advanced work, so you wont see examplesin this text.

Instances of simple classes, like class Nunber , class Queue, classAi rcraft areal
represented by a single block of data. But there are classes where the instances own
other data structures (or, more generally, other resources such as open files, network
connections and so forth). Class Dynani cArr ay isan example; it owns that separately
allocated array of voi d* pointers. ClassesLi st and Bi nar yTr ee @S0 0wn resources,
after all, they really should be responsible for those listcells and treenodes that they
createin the heap.

Resource managers have special responsihilities. They should make certain that any
resources that they claim get released when no longer required. This requirement
necessitates a new kind of function — a "destructor”. A destructor is a kind of
counterpart for the constructor. A constructor function initializes an object (possibly
claiming some resources, though usually additional resources are claimed later in the
object'slife). A destructor allows an object to tidy up and get rid of resources before it
isitself discarded. The C++ compiler arranges for calls to be made to the appropriate
destructor function whenever an object gets destroyed. (Dynamic objects are destroyed
when you apply operator del et e; automatic objects are destroyed on exit from
function; and static objects are destroyed during "at_exit" processing that takes place
after return from mai n() .)

There is another problem with resource manager classes — assignment. The normal
meaning of assignment for a struct or classinstance is "copy the bytes'. Now the bytes
in aresource manager will include pointers to managed data structures. If you just copy
the bytes, you will get two instances of the resource manager class that both have
pointers to the same managed data structure. Assignment causes sharing. Thisis very
rarely what you would want.



Introduction 789

If assignment is meaningful for a resource manager, its interpretation is usually
"give me a copy just like this existing X"; and that means making copies of any
managed resources. The C++ compiler can not identify the managed resources. So if
you want assignment to involve copying resources, you have to write a function does
this. This becomes the "assignment function" or "oper at or =() " function. You aso
have to write a special "copy constructor”.

Actualy, you usually want to say "instances of this resource manager class cannot
be assigned”. Despite examples in text books, there are very few situations in real
programs where you want to say something like "give me a binary tree like this existing
binary tree". There are mechanisms that allow you to impose constraints that prohibit
assignment.

The final section of this chapter introduces the idea of inheritance. Basically,
inheritance alows you to define a new class that in some way extends an existing
defined class. There are several different uses for inheritance and the implications of
inheritance are the main topic of Part V of thistext.

Although your program may involve many different kinds of object, there are often
similarities among classes. Sometimes, it is possible to exploit such similarities to
simplify the overall design of a program. An example like thisis used to motivate the
use of class hierarchies where specialized classes inherit behaviours from more general
abstract classes.

The next subsection shows how class hierarchies can be defined in C++ and explains
the meanings of terms like "virtual function". Other subsections provide a brief guide
to how programs using class hierarchies actually work and cover some uses of multiple
inheritance.

23.1 SHARED CLASS PROPERTIES

A class declaration describes the form of objects of that class, specifying the various
data members that are present in each object. Every instance of the class is separate,
every instance holds its own unique data.

Sometimes, there are data that you want to have shared by all instance of the class.
The introduction section of this chapter gave the example of the aircraft that needed to
"share" a minimum height variable. For second example, consider the situation of
writing a C++ program that used Unix's Xlib library to display windows on an
Xterminal. You would probably implement a class Window. A Window would have
data members for records that describe the font to be used for displaying text, an integer
number that identifies the "window" actually manipulated by the interpretive code in
the Xterminal itself, and other data like background colour and foreground colour.
Every Window object would have its own unique data in its data members. But al the
windows will be displayed on the same screen of the same display. In Xlib the screen
and the display are described by data structures;, many of the basic graphics cals require
these data structures to be included among the arguments.

Preventing
assignment

Inheritance



790

Intermediate class

Class declarations
with static data
members

Defining the static
variables

Y ou could make the "Display" and the "Screen” global data structures. Then al the
Window objects could use these shared globals.

But the "Display" and the "Screen" should only be used by Windows. If you make
them globals, they can be seen from and maybe get misused in other parts of the
program.

The C++ solution is to specify that such quasi globals be changed to "class
members' subject to the normal security mechanisms provided by C++ classes. If the
variable that represents the minimum height for aircraft, or those that represent the
Display and Screen used by Windows, are made private to the appropriate classes, then
they can only be accessed from the member functions of those classes.

Of course, you must distinguish these shared variables from those where each class
instance has its own copy. This is done using the keyword st ati c. (Thisisan
unfortunate choice of name because it is a quite different meaning from previous uses
of the keyword st ati c.) The class declarations defining these shared variables would
be something like the following:

class Aircraft {

public:
Aircraft();
pri vé.t.e:
static int sM nHei ght ;
int fTi me;
Pl aneDat a f Dat a;
¥
cl ass Wndow {
public:
pri vé.t.e:
static Screen sScreen;
static D spl ay sDi spl ay;
co: f GG
XRect angl e fRect ;
¥

(Asusud, it is helpful to have some naming convention. Here, static data members of
classes will be given names starting with 's’.)

The class declarations specify that these variables will exist somewhere, but they
don't define the variables. The definitions have to appear elsewhere. So, in the case of
class Ai rcr af t, the header file would contain the class declaration specifying the
existence of the class data member sM nHei ght , the definition would appear in the
Aircraft.cp implementation file:

#include "Aircraft.h"



Shared class properties 791

int Aircraft::sMnHeight = 1000; // initialize to safe 1000' val ue

i“rllt Aircraft:: TooLow()

return (fData.z < sMnHeight);
}

The definition must use the full name of the variable; thisis the member name qualified
by the class name, so sM nHei ght hasto be defined asAi rcraft:: sM nHei ght. The
st ati c qualifier should not be repeated in the definition. The definition can include an
initial value for the variable.

The example TooLow() function illustrates use of the st at i ¢ data member from
inside a member function.

Quite often, such st at i ¢ variables need to be set or read by code that is not part of
any of the member functions of the class. For example, the code of the Ai r Cont rol | er
class would need to change the minimum safe height. Since the variable sM nHei ght is
private, a public access function must be provided:

void Aircraft::SetMnHeight(int newnn) { sMnHeight = newnin;
}

Most of the time the Ai r Cont r ol | er worked with individual aircraft asking them to
perform operations like print their details. f Aircraft[i]->Pri nt On(cout). But
when the Ai r Cont r ol | er has to change the minimum height setting, it isn't working
with aspecificAi rcraft. Itisworking withtheAi rcraft classasawhole. Although
it is legal to have a statement like f Aircraft[i]->Set M nHei ght (600) , thisisn't
appropriate because the action really doesn't involvef Aircraft[i] atall.

A member function like Set M nHei ght () that only operatesonst at i ¢ (class) data
members should be declared asast at i ¢ function:

class Aircraft {

public:

Arcraft();

static void Set M nHei ght (i nt newm n);
privat e:

static int sM nHei ght ;

int fTi ne;

M aneDat a f Dat a;
b

This allows the function to be invoked by external code without involving a specific
instance of class Ai rcr af t , instead the call makes clear that it is "asking the class as a
whol€e" to do something.

Static member
functions

Class declarations
with static data and
function members



792

Intermediate class

Calling a static
member function

Use of statics

void AirController::ChangeHei ght ()

{
int h;
cout << "What is the new mni nun? ";
cin >> h;
if((h <300) || (h>1500)) {
cout << "Don't be silly" << endl; return;
}
Aircraft:: Set M nHei ght (h);
}

You will find that most of the variables that you might initial think of as being
"globals" will be better defined as st at i ¢ members of one or other of the classes in
your program.

Onefairly common use is getting a unique identifier for each instance of a class:

class Thing {
public:
Thing();

private:
static int sl dCount er;
int fld;

b
int Thing::sldCounter = O;

Thing:: Thing() { fld = ++sldCounter; ...}

Each instance of class Thi ng hasits own identifier, f1d. Thestati c (class) variable
sl dCount er getsincremented every time anew Thi ng is created and so its value can
serve asthe latest Thi ng'suniqueidentifier.

23.2 FRIENDS

Asnoted in the introduction to this chapter, the main use of "friend" functions will be to
help build groups (clusters) of classes that need to work closely together.

In Chapter 21, we had class Bi nar yTr ee that used a helper class, Tr eeNode.
Bi nar yTr ee created Tr eeNodes and got them to do things like replace their keys.
Other parts of the program weren't supposed to use Tr eeNodes. The example in
Chapter 21 hid the Tr eeNode class inside the implementation file of Bi naryTree. The
header file defining class Bi nar yTr ee merely had the declaration cl ass Tr eeNode;
which simply allowed it to refer to Tr eeNode* pointers. This arrangement prevents
other parts of a program from using Tr eeNodes. However, there are times when you
can't arrange the implementation like that; code for the main class (equivalent to



Friends 793

Bi nar yTr ee) might have to be spread over more than one file. Then, you have to
properly declare the auxiliary class (equivalent of Tr eeNode) in the header file. Such a
declaration exposes the auxiliary class, opening up the chance that instances of the
auxiliary class will get used inappropriately by other parts of the program.

This problem can be resolved using afriend relation as follows:

class Auxiliary { A very private class
friend class Miind ass;
private:
Auxi liary();
int Set Propl(int newal);
voi d PrintOn(ostrean®) const;

i”r.1t f Prop1l;
Yo
class Maind ass { that hasafriend
publi c:
b

All the member functions and data members of class Auxi | i ary aredeclared pri vat e,
even the constructor. The C++ compiler will systematically enforce the pri vat e
restriction. If it finds a variable declaration anywhere in the main code, e.g. Auxi | i ary
al;, it will note that this involves an implicit call to the constructor
Auxi liary::Auxiliary() and, since the constructor is private, the compiler will
report an access error. Which means that you can't have any instances of class
Auxi li ary!

However, the f ri end clause in the class declaration partially removes the privacy
wall. Since class Mai nCl ass is specified to beaf ri end of Auxi | i ary, member
functions of Mai nCl ass can invoke any member functions (or data members) of an
Auxi | i ary object. Member functions of class Mai nCl ass can create and use instances
of class Auxi l i ary.

There are other uses of friend relations but things like this example are the main
ones. Thefriend relation is being used to selectively "export" functionality of a classto
chosen recipients.

23.3 ITERATORS

With collection classes, like those illustrated in Chapter 21, it is often useful to be able
to step through the collection processing each data member in turn. The member
functions for Li st and Dynani cArray did alow for such iterative access, but only in a
relatively clumsy way:



794

Intermediate class

Dynam cArray di;

for(int i =1; i <dL Length(): i++) {
Thing* t = (Thing*) dl.Nh(i);
t - >DoSonet hi ng() ;

}
That code works OK for Dynani cArray whereNt h() isbasically an array indexing
operation, but it isinefficient for Li st wherethe Nt h() operation involves starting at
the beginning and counting along the links until the desired element is found.

The PrintOn() function for Bi naryTree involved a "traversal” that in effect
iterated though each data item stored in the tree (starting with the highest key and
working steadily to the item with the lowest key). However the Bi nar yTr ee class
didn't provide any general mechanism for accessing the stored elements in sequence.

Mechanisms for visiting each data element in turn could have been incorporated in
the classes. The omission was deliberate.

Increasingly, program designers are trying to generalize, they are trying to find
mechanisms that apply to many different problems. General approaches have been
proposed for working through collections.

The basic ideaisto have an "lterator" associated with the collection (each collection
has a specialized form of Iterator asillustrated below). An lterator isin itself asimple
class. Its public interface would be something like the following (function names may
differ and there may be slight variations in functionality):

class Iterator {
public:
Iterator(.);
voi d First(void);
voi d Next (voi d) ;

int | sDone(voi d);
voi d *Qurrentlten{void);
private:

b

Theideaisthat you can create an iterator object associated with alist or tree collection.
Later you can tell that iterator object to arrange to be looking at the "first" element in
the collection, then you can loop examining the itemsin the collection, using Next () to
move on to the next item, and using the | sDone() function to check for completion:

Col | ection cl;

I”t'erator i1(cl);
il Start();
while(!il.IsDone()) {



Iterators 795

Thing* t = (Thing*) il.Qurrentlten();
t - >DoSonet hi ng() ;

i 1. Next ():

This same code would work whether the collection were a Dynam cArray, alLi st, or a
Bi naryTr ee.

As explained in the final section of this chapter, it is possible to start by giving an
abstract definition of an iterator as a "pure abstract class’, and then define derived
subclasses that represent specialized iterators for different types of collection. Here, we
won't bother to define the general abstraction, and will just define and use examples of
specialized classes for the different collections.

The iterators illustrated here are "insecure”. |If a collection gets changed while an
iterator is working, things can go wrong. (There is an analogy between an iterator
walking along a list and a person using stepping stones to cross a river. The iterator
moves from listcell to listcell in response to Next () requests; it is like a person
stepping onto the next stone and stopping after each step. Removal of the listcell where
the iterator is standing has an effect similar to magically removing a stepping stone
from under the feet of theriver crosser.) There are ways of making iterators secure, but
they are too complex for thisintroductory treatment.

23.3.1 Listlterator

An iterator for class Li st is quite ssimple to implement. After all, it only requires a
pointer to a listcell. This pointer starts pointing to the first listcell, and in response to
"Next" commands should move from listcell to listcell. The code implementing the
functions for Li st 1t erat or issosimplethat al its member functions can be defined
"inline".

Conseguently, adding an iterator for class Li st requires only modification of the
header file:

#ifndef _ MWLIST
#define _ MYLIST__

class Listlterator;
class List {
public:

List();

int Lengt h(voi d) const;

friend class Listlterator;
private:

An " abstract base
class' for lterators?

Insecureiterators

Nominate friends



796 Intermediate class
struct ListCell { void *fData; ListCell *fNext; };
Special access ListCell *Head(voi d) const;
function only used by

friends

Declare theiterator
class

I mplementation of
Listlterator

Friend nomination
Access function

List::Head()

Declaration of
Listlterator class

i nt f Num
Li st Cel | *f Head;
Li st Cel | *fTail ;
b
class Listlterator {
public:
Listlterator(List *I);
voi d First(void);
voi d Next (voi d) ;
int | sDone(voi d);
voi d *Qurrentlten(void);
private:
List::ListCell *fPos;
Li st *fList;
b

inline int List::Length(void) const { return fNum }
inline List::ListCell *List::Head() const { return fHead; }

inline Listlterator::Listlterator(List *I)

{ fList =1; fPos = fList->Head(); }
inline void Listlterator::First(void) { fPos = fList->Head(); }
inline void Listlterator:: Next(void)

{ if(fPos I'= NULL) fPos = fPos->f Next; }
inline int Listlterator::lsDone(void) { return (fPos == NULL);
}

inline void *Listlterator::Qurrentlten(void)
{ if(fPos == NULL) return NULL; else return fPos->fData; }
#endi f

There are severa points to note in this header file. Class Li st nominates class
Li st1terator asafriend; this means that in the code of classLi st 1t erat or, therecan
be statements involving access to private data and functions of class Li st .

Here, an extra function is defined — Li st : : Head(). Thisfunctionis private and
therefore only useablein class Li st and its friends (this prevents clients from getting at
the head pointer to the chain of listcells). Although, as afriend, aLi st1terator can
directly access the f Head data member, it is still preferable that it use a function style
interface. You don't really want friends becoming too intimate for that makes it
difficult to locate problems if something goes wrong.

The class declaration for Li st I t er at or isstraightforward except for the type of its
f Pos pointer. Thisisapointer to aLi st Cel | . But the struct Li st Cel | isdefined
within class List. If, ashere, you want to refer to this datatype in code outside of that of
class Li st , you must giveits full type name. ThisisalLi st Cel | asdefined by class
Li st. Hence, the correct type nameisLi st : : Li st Cel | .



Listlterator 797

The member functions for class Li st1terator areall simple. The constructor
keeps a pointer to the Li st that it isto work with, and initializes the f Pos pointer to the
first listcell inthelist. Member function Fi rst () resetsthe pointer (useful if you want
the iterator to run through the list more than once); Next () advances the pointer;
Qurrentlten() returnsthe data pointer from the current listcell; and | sDone() checks
whether the f Pos pointer has advanced off the end of the list and become NULL. (The
code for Next () checks to avoid falling over at the end of alist by being told to take
the "next" of a NULL pointer. This could only occur if the client program was in error.
Y ou might choose to "throw an exception”, see Chapter 26, rather than make it a "soft
error".)

The test program used to exercise class Li st and class Dynami cAr ray can be
extended to check the implementation of class Li st 1t er at or :. It needsanew branch
initsswi tch() statement, one that allows the tester to request that aLi st 1t er at or
"walk" along the Li st :

case 'wW:
Listlterator li(&cl);
li.First();
cout << "Qurrent collection " << endl;
while(!li.lsDone()) {
Book p = (Book) li.CQurrentlten();
cout << p << endl;
li.Next();
}
}
br eak;
The statement:

Listlterator li(&c1);

createsalistlterator,caledli, giving it the address of the Li st , cl , that it isto
work with (the Li st I t er at or constructor specifies a pointer to Li st , hence the need
for an & address of operator).

The statement, | i . Fi rst (), is redundant because the constructor has already
performed an equivalent initialization. It is there simply because that is the normal
pattern for walking through a collection:

li.First();
while(!li.lsDone()) {
..li.Qurrentltem();

li. Next();
}

I mplementation of
Listlterator



798

Intermediate class

Backwards and
forwardsiteratorsin
two way lists

Stack of pointers
maintain state of
traversal

Note the need for the typecast:

Book p = (Book) li.CQurrentlten();

In the example program, Book is apointer type (actually just achar *). TheCurrent -

I'tem() functionreturnsavoi d*. The programmer knows that the only things that will
beinthecl list are Book pointers; so the type cast is safe. It is aso necessary because
of course you can't really do anything with avoi d* and here the code needs to process
the books in the collection.

Class Li st issingly linked, it only has "next" pointersin its listcells. This means
that it isonly practical to "walk forwards' along the list from the head to thetail. If the
list class uses listcells with both "next" and "previous' pointers, it is practical to walk
the list in either direction. Iterators for doubly linked lists usually take an extra
parameter in their constructor; this is a "flag” that indicates whether the iterator is a
"forwards iterator" (start at the head and follow the next links) or a"backwards iterator"
(start at the tail and follow the previous links).

23.3.2 Treelterator

Like doubly linked lists that can have forwards or backwards iterators, binary trees can
have different kinds of iterator. An "in order" iterator process the left subtree, handles
the data at a treenode, then processes the right subtree; a "pre order" iterator processes
the data at a tree node before examining the left and right subtrees. However, if the
binary tree is a search tree, only "in order" traversal is useful. An in order style of
traversal means that the iterator will return the stored itemsin increasing order by key.

An iterator that can "walk" a binary tree is a little more elaborate than that needed
for alist. It is easy to descend the links from the root to the leaves of atree, but there
aren't any "back pointers' that you could use to find your way back from a leaf to the
root. Consequently, a Tr eel t er at or can't manage simply with a pointer to the current
Tr eeNode, it must al'so maintain some record of information describing how it reached
that Tr eeNode.

As illustrated in Figure 23.1, the iterator uses a kind of "stack" of pointers to
TreeNodes. Inresponseto aFirst () request, it chases down the left vine from the
root to the left most leaf; so, in the example shown in Figure 23.1 it stacks up pointers
tothe Tr eeNodes associated with keys 19, 12, 6.

A Currentlten() request should return the dataitem associated with the entry at
the top of this stack.

A Next () request hasto replace the topmost element by its successor (which might
actually already be present in the stack). As illustrated in Figure 23.1, the Next ()
request applied when the iterator has entries for 19, 12, and 6, should remove the 6 and
add entriesfor 9and 7.



Treelterator 799

Example Tree:

Treelterator's "stack"

First() | 19 19 19 19 19 28 28 33
12 12 12 12 26
6 9 9

7

R

6 7 9 12 19 26 28 33

Figure 23.1  Tree and tree iterator.

A subsequent Next () request removes the 7, leaving 19, 12, and 9 on the stack.
Further Next () requests remove entries until the 19 is removed, it has to be replaced
with its successor so then the stack isfilled up again with entries for 28 and 26.

The programmer implementing class Tr eel t er at or hasto chose how to represent
this stack. If you wanted to be really robust, you would use a Dynam cArr ay of
Tr eeNode pointers, this could grow to whatever size was needed. For most practical
purposes a fixed size array of pointers will suffice, for instance an array with one
hundred elements. The size you need is determined by the maximum depth of the tree
and thus depends indirectly on the number of elements stored in the tree. If the tree
were balanced, a depth of one hundred would mean that the tree had quite a large
number of nodes (something like 299). Most trees are poorly balanced. For example if
you inserted 100 data items into a tree in decreasing order of their keys, the left branch
would be one hundred deep. Although afixed array will do, the code needs to check for
the array becoming full.

Representing the
stack



800 Intermediate class

Class Bi nar yTr ee hasto nominate class Tr eel t er at or asa"friend", and again for
style its best to provide a private access function rather than have this friend rummage
around in the data:

class BinaryTree

{
public:
Bi naryTree();

friend class Treelterator;
private:
Tr eeNode *Root (voi d) ;

b

inline TreeNode *Bi naryTree:: Root(void) { return fRoot; }

Class Treel t er at or hasthe standard public interface for an iterator; its private data
consist of a pointer to the Bi nar yTr ee it works with, an integer defining the depth of
the "stack”, and the array of pointers:

class Treelterator {

public:
Treelterator(BinaryTree *tree);
voi d First(void);
voi d Next (voi d) ;

i nt | sDone(voi d);
voi d *Qurrentlten{void);
private:
i nt f Dept h;
Tr eeNode *f St ack[ kI TMAXDEPTH  ;
Bi naryTree *fTr ee;

b

The constructor simply initializes the pointer to the tree and the depth counter. This
initial value corresponds to the terminated state, as tested by the | sDone() function.
For thisiterator, acall toFi r st () must be made before use.

Treelterator::Treelterator(BinaryTree *tree)
fTree = tree;
fDepth = -1;

}

int Treelterator::|sDone(void)

return (fDepth < 0);



Treelterator 801

Function Fi rst () startsat the root and chases left links for asfar asit is possible to
go; each Tr eeNode Visited during this process gets stacked up. This process gets things
set up so that the data item with the smallest key will be the one that gets fetched first.

void Treelterator::First(void)

fDepth = -1;

TreeNode *ptr = fTree->Root ();

while(ptr '= NULL) {
f Dept h++;
fStack[fDepth] = ptr;
ptr = ptr->LeftLink();
}

}

Data items are obtained from theiterator using Current I t en() . Thisfunction just
returns the data pointer from the Tr eeNode at the top of the stack:

void *Treelterator::Qurrentlten{void)

if(fDepth < 0) return NULL;
el se
return fStack[fDepth]->Data();

}

The Next () function has to "pop" the top element (i.e. remove it from the stack)
and replace it by its successor. Finding the successor involves going down the right
link, and then chasing left links as far as possible. Again, each Tr eeNode visited during
this process gets "pushed” onto the stack. (If thereisno right link, the effect of Next ()
ismerely to pop an element from the stack.)

voi d Treelterator:: Next(void)

{
if(fDepth < 0) return;

TreeNode *ptr = fStack[fDepth];

f Dept h- -;

ptr = ptr->R ghtLink();

while(ptr !'= NULL) {
f Dept h++;
fStack[fDepth] = ptr;
ptr = ptr->LeftLink();
}

}

Use of the iterator should be tested. An additional command can be added to the test
program shown previously:



802

Intermediate class

case 'w:

Treelterator ti(&gTree);
ti.First();
cout << "Qurrent tree " << endl;
whil e(!'ti.lsDone()) {
Dataltem*d = (Dataltent) ti.CQurrentlten();
d->PrintCn(cout);
ti.Next();
}

}

br eak;

23.4 OPERATOR FUNCTIONS

Those Add(), Subtract (), andMul ti ply() functionsin classNunber (Chapter 19)
seem alittle unaesthetic. 1t would be nicer if you could write code like the following:

Nunber a("97417627567654326573654365865234542363874266") ;
Nunber b("65765463658764538654137245665") ;

Nunber c;

c=a+b;
The operations'+', - ', '/ * and " ' have their familiar meaningsandc = a + b doesread
better than ¢ = a. Add(b). Of coursg, if you are going to define '+, maybe you should
define ++, +=,--,-=, etc. If you do start defining operator functions you may have

quite alot of functions to write.

Operator functions are overrated. There aren't that many situations where the
operators have intuitive meanings. For example you might have some "string" class
that packages C-style character strings (arrays each with a\O' terminating character as
its last element) and provides operations like Concatenate (append):

String a("Hello");
String b(" Wrld");

¢ = a. Concatenat e(b); I/l or maybe? c = a + b;

You could define a '+' operator to work for your string class and have it do the
concatenate operation. It might be obvious to you that + means "append strings’, but
other people won't necessarily think that way and they will findyour c = a + b more
difficult to understand thanc = a. Concat enat e(b) .

When you get to use the graphics classes defined in association with your IDE's
framework class library, you will find that they often have some operator functions
defined. Thus class Poi nt may have an oper at or + function (this will do something



Operator functions 803

like vector addition). Or, you might have class Rect angl e where there is an
"oper at or +( const Poi nt & " function; this curious thing will do something like move
the rectangle's topleft corner by the x, y amount specified by the Poi nt argument (most
people find it easier if the classhasaRect angl e: : MoveTopLeft Corner () member
function).

Generally, you should not define operator functions for your classes. Y ou can make
exceptions for some. Class Nunber is an obvious candidate. Y ou might be able to
pretty up class Bi t map by giving it "And" and "Or" functions that are defined in terms
of operators.

Apart from a few special classes where you may wish to define several operator
functions, there are a couple of operators whose meanings you have to redefine in many
classes.

23.4.1 Defining operator functions

As far as a compiler is concerned, the meaning of an operator like '+' is defined by
information held in an internal table. This table will specify the code that has to be
generated for that operator. The table will have entries like:

oper at or cont ext transl ation
| ong + | ong load integer register with first data item
add second data itemto contents of register

double + double load floating point register with first data item
add second data itemto contents of register

The translation may specify a sequence of instructions like those shown. But some
machines don't have hardware for all arithmetic operations. There are for example
RISC computers that don't have "floating point add" and "floating point multiply";
some don't even have "integer divide". The tranglations for these operators will specify
the use of afunction:

oper at or cont ext transl ation
| ong / | ong push di vidend and divi sor onto stack
call ".div" function

In most languages, the compiler's translation tables are fixed. C++ alows you to add
extraentries. So, if you have some "add" code for aclass Poi nt that you've defined and
you want this called for Poi nt + Poi nt, you can specify thisto the compiler. It takes
details from your specification and appends these to its translation tables:

oper at or cont ext transl ation
poi nt + poi nt push the two points onto the stack
call the function defined by the programrer



804 Intermediate class

The specifications that must appear in your classes are somewhat unpronounceable.
An addition operator would be defined as the function:

oper at or +()

(say that as "operator plus function™). For example, you could have:
class Point {
public:
Poi nt ();
I.:;C.)i nt operator+(const Point& other) const;
pri vé.t.e:
i nt fh, fv;
¥

with the definition:

Poi nt Point:: operator+(const Point& other) const

{
Poi nt vecSum
vecSumfh = this->fh + other.fh;
vecSumfv = this->fv + other.fv;
return vecSum

}

This example assumes that the + operation shouldn't change either of the Poi nt s that it
works on but should create a temporary Poi nt result (in the return part of a function
stackframe) that can be used in an assignment; this makes it like + for integers and
doubles.

It is up to you to define the meaning of operator functions. Multiplying points by
points isn't very meaningful, but multiplying points by integersis equivalent to scaling.
So you could have the following where there is a multiply function that changes the
Poi nt object that executesit:

class Point {
public:
Point ();

Poi nt oper at or +(const Poi nt & ot her) const;

Poi nt & operator*(int scal efactor);
private:

i nt fh, fv;



Defining operator functions 805

with a definition:

Poi nt & Poi nt:: operator*(int scal efactor)

{
/1l returning a reference allows expressions that have
/1 scaling operations enbedded inside them
fh *= scal efactor;
fv *= scal efactor;
return *this;
}

with these definitions you can puzzle anyone who has to read and maintain your code
by having constructs like:

to:

Point a(6,4);

a;3;

Point b(7, 2);
Poi nt c;

c =b + a4

Sensible maintenance programmers will eventually get round to changing your code

class Point {
public:
Poi nt () ;

Poi nt operat or+(const Poi nt & ot her) const;
void Scal eBy(int scal efactor);

b
void Point:: Scal eBy(int scal efactor)

fh *= scal efactor;
fv *= scal efactor;

}

resulting in more intelligible programs:

Point a(6,4);

a. Scal eBy(3):



806

Intermediate class

Point b(7, 2);
Poi nt c;

:d-.. Scal eBy(4);
cC=Db+a

Avoid the use of operator functions except where their meanings are universally
agreed. If their meanings are obvious, operator function can result in cosmetic
improvements to the code; for example, you can pretty up class Nunber asfollows:

cl ass Nunber {
public:
/1 Menber functions declared as before

Nunber oper at or +( const Nunber & ot her) const;
Nunber operator/(const Nunber& other) const;

private:
I/ as before

b

inline Number Nunber: : operat or +(const Nunber & ot her) const
{

}

return this->Add(other);

Usually, the meanings of operator functions are not obvious

23.4.2 Operator functions and the iostream library

Y ou will frequently want to extend the meanings of the << and >> operators. A C++
compiler's built in definition for these operatorsis quite limited:

oper at or cont ext translation
| ong << long load integer register with first data item
shift left by the specified nunber of places

| ong >> | ong | oad integer register with first data item
shift right by the specified nunber of places

But if you #include the iostream header files, you add all the "takes from" and "gives
to" operators:

oper at or cont ext translation
ostream << long push the ostreamid and the long onto the stack
call the function "ostream : operat or<<(long)"



Takes from and gives to operators 807

istream >> |ong push the istreamid and the address of the |ong
onto the stack
call the function "istream : operator>>(l ong& "

These entries are added to the table as the compiler reads the iostream header file with
its declarations like:

cl ass ostream {
public:

ost rean®& oper at or <<(| ong) ;
ost rean®& oper at or <<(char *) ;

b

Such functions declared in the iostream.h header file are member functions of class
i st reamor classost ream Anost r eamobject "knows' how to print out along integer,
acharacter, adouble, a character string and so forth.

How could you make an ost r eamobject know how to print aPoi nt or some other
programmer defined class?

Typically, you will aready have defined a Pri nt On() member function in your
Poi nt class.

class Point {

public:
\'/'c')id PrintOn(ostrean& out);
privat e:
int fh, fv;
¥
void Point::PrintO(ostrean& out)
{
Out << u(n << fh << n’ " << fV << n) u;
}

and all you really want to do is make it possible to write something like:

Point pl, p2;
(.:.c.)ut << "Start point " << pl << ", end point " << p2 << endl;
rather than:

cout << "Start point "
pl. PrintOn(cout);
cout << ", end point ";



808 Intermediate class

p2. PrintCn(cout);

cout << endl;

Y ou want someway of telling the compiler that if it seesthe << operator involving an
ost r eamand aPoi nt then it isto use code similar to that of the Poi nt : : Pri nt On()
function (or maybe just use acall to the existing Pri nt On() function).

Y ou could change the classes defined in the iostream library. You could add extra
member functions:

cl ass ostream {

/1 everything as now pl us

ost r ean®& oper at or <<(const Poi nt & p);

b
and provide your definition of ost r eam& ost r eam : oper at or <<(const Poi nt &) .

It should be obvious that this is not desirable. The iostream library has been
carefully developed and debugged. You wouldn't want hundreds of copies each with
minor extensions hacked in.

Fortunately, such changes aren't necessary. There is another way of achieving the
desired effect.

A global You can define global operator functions. These functions aren't members of
operator<<(ostreamé&

, Point&) function

classes. They are simply devices for telling the compiler how it is to translate cases
where it finds an operator involving arguments of specified types.

In this case, you need to define a new meaning for the << operator when it must
combine an ost r eamand aPoi nt . So you define:

?? oper at or <<(ostrean& o0s, const Point& p)

p. Printn(o0s);
return ??

}

(the appropriate return type will be explained shortly). The compiler invents aname for
the function (it will be something complex like _ I eftshift_Tostreanref_
cTPoi nt r ef ) and adds the new meaning for << toitstable:

oper at or cont ext transl ation
ostream << point push the ostreamid and the point's address onto
the stack
call the function __leftshift_Tostreanref
cTPoi ntref
This definition then allows congtructs like: Poi nt p; .., cout << p;.

Of course, the ideal isfor the stream output operations to be concatenated asin:



Takes from and gives to operators 809

cout << "Start point " << pl << ", end point " << p2 << endl;

This requirement defines the return type of the function. It must return a reference to
the ostream:

ost rean®& oper at or <<(ostrean& os, const Point& p)
p. Printn(os);
return os;

}

Having a reference to the stream returned as a result permits the concatenation. Figure
23.2 illustrates the way that the scheme works.

cout << "Start point " k< pl <<" endpoint” <<p2 <<endl

calls
ostream::operator<<(char*),
returning ostreamé&, i.e. cout

calls global
operator<<(ostreamé&, const Point),
returning ostreamé&, i.e. cout

cout << pl

Figure 23.2 lllustration of groupings involved in concatenated use of ostreamé&
operator<<() functions.

Y ou might also want:

ost rean®& operator<<(ostrean& os, Point *p _pt)

{
p_pt->Print(os);

return os;

23.5 RESOURCE MANAGER CLASSES AND
DESTRUCTORS

This section explains some of the problems associated with "resource manager" classes.

Resource manager classes are those whose instances own other data structures.
Usually, these will be other data structures separately allocated in the heap. We've
already seen exampleslike class Dynani cAr r ay whose instances each own a separately
allocated array structure. However, sometimes the separately allocated data structures



810

Intermediate class

may be in operating system's area; examples here are resources like open files, or "ports
and sockets' as used for communications between programs running on different
computers.

The problems for resource managers are:

e disposa of managed resources that are no longer required;

e unintended sharing of resources.

The first subsection, 23.5.1, provides some examples illustrating these problems. The
following two sections present solutions.

23.5.1 Resource management

Instances of classes can acquire resources when they are created, or as a result of
subsequent actions. For example, an object might require a variable length character
string for a name:

class Dataltem {
public:
Dat al t en{ const char* dnane);

private:
char *f Nane;

1
Dataltem: Datal t en{const char* dnane)

f Name = new char[strl en(dname) + 1];
strcpy(fNane, dnane);

}
Another object might need to use afile:
cl ass Sessi onLogger {

public:
Sessi onLogger () ;

i nt QpenLogFi | e(const char* | ognane) ;
private:
6fstream fLfile



Resource management 811

i nt Sessi onLogger : : QpenLogFi | e(const char* | ognane)

fLfile.open(logname, ios::out);
return fLfile.good();
}

Instances of the Dat al t emand Sessi onLogger classeswill be created and destroyed
in various ways.

voi d DemoFuncti on()

whi | e( Anot her Session()) {
char narre[ 100] ;
cout << "Session nanme: "; cin >> nane;
Sessi onLogger sl1;
i f(0 == sl1. QpenLogFi | e(nane)) {
cout << "Can't continue, no file.";

br eak;
}
for(;;) {
char dbuf f[ 100] ;
E)étaltem *dptr = new Datal t en{ dbuff);
aél ete dptr;
}

}

In the example code, a Sessi onLogger object is, in effect, created in the stack and
subsequently destroyed for each iteration of the whi | e loop. Inthe enclosed f or loop,
Dat al t emaobjects are created in the heap, and later explicitly deleted.

Figure 23.3 illustrates the representation of a Dat al t em(and its associated name) in
the heap, and the effect of the statement del et e dptr. As shown, the space occupied
by the primary Dat al t emstructure itself is released; but the space occupied by its name
string remains "in use". Class Dat al t emhasa"memory lesk".

Figure 23.4 illustrates another problem with class Dat al t em, this problem is sharing
due to assignment. The problem would show up in code like the following (assume for
this example that class Dat al t em has member functions that change the case of al
lettersin the associated name string):

Dataltemdl("This ne");
Dat al t em d2("anot her one");

d2 = di;



812

Intermediate class

dptr > In use %
heap structure

containing a Dataltem || LLN\are L

| n_use | n_use
heap structure DEMO J‘_ DEMO
containing a string ||| 1 1
Heap after Heap after
dptr = new Dat al t en{ DEMDL) del ete dptr

Figure 23.3  Resource manager class with memory leak.

d1. MakeLower Case();
d2. MakeUpper Case() ;
dl. PrintCn(cout);

The assignment d2 = d1 will work by default. The contents of record structure d1
are copied field by field into d2, so naturally d2'sf Name pointer is changed to point to
the same string as that referenced by d1. f Name. (There is also another memory leak;
the string that used to be owned by d2 has now been abandoned.)

Since d2 and d1 both share the same string, any operations that they perform on that
string will interact. Although object d1 has made its string lower case, d2 changesit to
upper case so that when printed by d1 it appears as upper case.

Class Sessi onLogger has very similar problems. The resource that a
Sessi onLogger object owns is some operating system structure describing afile. Such
structures, lets just call them "file descriptors,” get released when files are closed. If a
Sessi onLogger object is destroyed before it closes its associated file, the file descriptor
structures remain. When a program finishes, all files are closed and the associated file
descriptor structures are released.



Resource management 813

d1i I'n use di | n use
Thi s Thi s
fNane  —— one fNare  —— one
d2 d2
f Nare | f Narre
Stack Heap Stack Heap
Initial state after assignment
d2 = d1

Figure 23.4  Assignment leading to sharing of resources.

However, an operating system normally limits the number of file descriptors that a
program can own. If Sessi onLogger objects don't close their files, then eventualy the
program will run out of file descriptors (its a bit like running out of heap space, but you
can make it happen alot more easily).

Structure sharing will also occur if a program's code has assignment statements

involving Sessi onLogger s:

Sessi onLogger s1, s2;
sl QpenLogFi l e("testing");
2 = si;

Both Sessi onLogger objects use the same file. So if one does something like cause a
seek operation (explicitly repositioning the point where the next write operation should
occur), thiswill affect the other Sessi onLogger .



814

Intermediate class

23.5.2 Destructor functions

Some of the problems just explained can be solved by arranging that objects get the
chance to "tidy up" just before they themselves get destroyed. You could attempt to
achieve this by hand coding. You would definea"TidyUp" function in each class:

void Dataltem:TidyUp() { delete [] fName; }

voi d SessionLogger::TidyUp() { fLfile.close(); }

Y ou would have to include explicit callsto these Ti dyUp() functionsat all appropriate
pointsin your code:

whi | e( Anot her Session()) {
ééssi onLogger s1;
for(;;) {
bétal tem *dptr = new Datal t en{dbuff);

Hbt r->Ti dyUp();
delete dptr;

}
s1. TidyW();
}

That is the problem with "hand coding". It is very easy to miss some point where an
automatic goes out of scope and so forget to include a tidy up routine. Insertion of
these calls is also tiresome, repetitious "mechanical" work.

Tiresome, repetitious "mechanical" work is best done by computer program. The
compiler program can take on the job of putting in calls to "TidyUp" functions. Of
course, if the compiler is to do the work, things like names of functions have to be
standardized.

For each class you can define a "destructor” routine that does this kind of tidying up.
In order to standardize for the compiler, the name of the destructor routine is based on
the class name. For class X, you had constructor functions, e.g. X(), that create
instances, and you can have a destructor function ~X() that does a tidy up before an
object isdestroyed. (The character ~, "tilde", is the symbol used for NOT operations on
bit maps and so forth; a destructor isthe NOT, or negation, of a constructor.)

Rather than those "TidyUp" functions, class Dat al t emand class Sessi onLogger
would both define destructors:

class Dataltem {
public:
Dat al t en{ const char *nare);



Destructors 815

~Datalten();
Y
Dataltem: ~Datalten() { delete [] fName; }

cl ass SessionLogger {
public:
Sessi onLogger () ;
~Sessi onLogger() { this->fLfile.close(); }

b

Just as the compiler put in the implicit calls to constructor functions, so it puts in the
callsto destructors.

Y ou can have a class with several constructors because there may be different kinds
of data that can be used to initialize aclass. There can only be one destructor; it takes
no arguments. Like constructors, adestructor has no return type.

Destructors can exacerbate problems related to structure sharing. Aswe now have a
destructor for class Dat al t em an individual Dat al t emobject will dutifully delete its
name when it gets destroyed. |f assignment has lead to structure sharing, there will be a
second Dat al t emaround whose name has suddenly ceased to exist.

Y ou don't have to define destructors for all your classes. Destructors are needed for
classes that are themselves resource managers, or classes that are used as "base classes'
in some class hierarchy (see section 23.6).

Several of the collection classes in Chapter 21 were resource managers and they
should have had destructors.

Class Dynani cAr r ay would be easy, it owns only asingle separately allocated array,
so al that its destructor need do is get rid of this:

cl ass Dynam cArray {

public:
Dynam cArray(int size = 10, int inc = 5);
~Dynam cArray();

privat e:

voi d **f|tens;

¥
Dynam cArray:: ~Dynam cArray() { delete [] fltens; }

Note that the destructor does not delete the data items stored in the array. Thisisa
design decision for al these collection classes. The collection does not own the stored
items, it merely looks after them for a while. There could be other pointers to stored



816

Intermediate class

items elsewhere in the program. Y ou can have collection classes that do own the items
that are stored or that make copies of the original data and store these copies. In such
cases, the destructor for the collection class should run through the collection deleting
each individual stored item.

Destructors for class Li st and class Bi nar yTr ee are a bit more complex because
instances of these classes "own" many listcells and treenodes respectively. All these
auxiliary structures have to be deleted (though, as already explained, the actual stored
data items are not to be deleted). The destructor for these collection class will have to
run through the entire linked network getting rid of the individual listcells or treenodes.

A destructor for classLi st isasfollows:

List::~List()
ListCell *ptr;
ListCell *tenp;
ptr = fHead;
while(ptr !'= NULL) {
tenp = ptr;
ptr = ptr->f Next;
del ete tenp;
}
}

The destructor for class Bi naryTr ee is most easily implemented using a private
auxiliary recursive function:

Bi naryTree: : ~Bi naryTree()

Dest roy(f Root) ;

voi d BinaryTree: : Destroy(TreeNode* t)

{
if(t == NULL)
return;
Destroy(t->LeftLink());
Destroy(t->R ghtLink());
delete t;
}

Therecursive Destroy() function chases down branches of the tree structure. At each
Tr eeNode reached, Dest roy() arranges to get rid of all the Tr eeNodes in the left
subtree, then all the Tr eeNodes in the right subtree, finally disposing of the current
TreeNode. (Thisisan example of a"post order" traversal; it processes the current node
of the tree after, "post", processing both subtrees.)



Assignment operator 817

23.5.3 The assignment operator and copy constructors

There are two places where structures or class instances are, by default, copied using a
byte by byte copy. These are assignments:

Dataltemdi("x"), d2("y");

d2 = di;

and in calls to functions where objects are passed by value:

void foo(Dataltemdd) { ...; ...; ...}

void test()
Dataltemanlten{"Hello world");
1;.(.)0( anlten;

}

This second case is an example of using a "copy constructor". Copy constructors are
used to build a new class instance, just like an existing class instance. They do turn up
in other places, but the most frequent place is in situations like the call to the function
requiring a value argument.

As illustrated in section 23.5.1, the trouble with the default "copy the bytes'
implementations for the assignment operator and for a copy constructor is that they
usually lead to undesired structure sharing.

If you want to avoid structure sharing, you have to provide the compiler with
specifications for aternative ways of handling assignment and copy construction. Thus,
for Dat al t em we would need a copy constructor that made a copy of the character
string f Narre:

Datal tem : Dat al t en{ const Datal t en& ot her) A copy constructor
{ that duplicates an
f Name = new char[strlen(other.fNane) + 1]; " owned resource"

strcpy(fNamre, other.fNane);
}

Though similar, assignments are a little more complex. The basic form of an Assignment operator
oper at or = function for the example class Dat al t emwould be:

?? Dataltem : operator=(const Datalten& other)

{



818

Intermediate class

Plugging a memory
leak

delete [] fNare;
fName = new char[strlen(other.fNare) + 1];
strcpy(fName, other.fNane);

}
The statement:

delete [] fNane;

gets rid of the existing character array owned by the Dat al t en this plugs the memory
leak that would otherwise occur. The next two statements duplicate the content of the
other Dat al t endsf Nane character array.

If you want to allow assignments at all, then for consistency with the rest of C++
you had better allow concatenated assignments:

Dat al t em d1(" XXX");
Datal tem d2(" YYY");
Dat al t em d3(" 2zZZ";

d3 = d2 = di;

To achieve this, you have to have the Dat al t em : oper at or =() functionto returna
reference to the Dat al t emitsdlf:

Dat al t en® Dat al t em : oper at or =(const Dat al t en& ot her)
{

aél ete [] fNang;
f Name = new char[strl en(other.fName) + 1];
strcpy(fNane, other. fNane);

return *this;

}

There is a small problem. Essentially, the code says "get rid of the owned array,
duplicate the other's owned array". Suppose somehow you tried to assign the value of
aDat al t emto itself; the array that has then to be duplicated is the one just deleted.
Such code will usually work, but only because the deleted array remains as a"ghost” in
the heap. Sooner or later the code would crash; the memory manager will have
rearranged memory in some way in response to the del ete operation.

Y ou might guess that "self assignments' arerare. Certainly, those like:

Datal tem d1("xyz");

dl = di;



Assignment operator 819

are rare (and good compilers will eliminate statements like d1 = d1). However, self
assignments do occur when you are working with data referenced by pointers. For
example, you might have:

Dataltem*d_ptr1,;
Dataltem*d_ptr2;

// Copy Dataltemreferenced by d_ptrl into the Dataltem
/1 referenced by pointer d_ptr2
*dptr2 = *dptrl;

It is of course possible that dpt r 1 and dpt r 2 are pointing to the same Dataltem.
You have to take precautions to avoid problems with self assignments. The
following arrangement (usually) works:

Dat al t en& Dat al t em : oper at or =(const Dat al t en& ot her)

if(this I'= &ther) {
delete [] fNane;
fNanme = new char[strlen(other.fNanme) + 1];
strcpy(fNane, other. fNare);
}

return *this;

}

It checks the addresses of the two Dat al t ens. One address is held in the (implicit)

pointer argument t hi s, the second address is obtained by applying the & address of

operator to ot her . If the addresses are equal it is a self assignment so don't do

anything.

Of course, sometimes it is just meaningless to allow assignment and copy Preventing copying

constructors. You realy wouldn't want two Sessi onLogger s working with the same

file (and they can't really have two files because their files have to have the same

name). In situations like this, what you really want to do is to prevent assignments and

other copying. You can achieve this by declaring a pri vat e copy constructor and a

pri vat e oper at or = function;

cl ass SessionLogger {
public:
Sessi onLogger () ;
~Sessi onLogger () ;

private:
/1 No assignment, no copyi ng!
voi d operat or=(const Sessi onLogger & ot her);
Sessi onLogger (const Sessi onLogger & ot her) ;



820

Intermediate class

Example application

Y ou shouldn't provide an implementation for these functions. Declaring these functions
as private means that such functions can't occur in client code. Code like
Sessi onLogger s1, s2; .. s2 = sl; will result in an error message like "Cannot
access Sessi onLogger : : _assi gn() here". Obviously, such operations won't occur in
the member functions of the class itself because the author of the class knows that
assignment and copying areillegal. The return type of the oper at or = function does
not matter in this context, so it is simplest to declareit asvoi d.

Assignment and copy construction should be disabled for collection classes like
those from Chapter 24, e.g.:

class BinaryTree {
public:

private:
voi d operator=(const BinaryTree& other);
Bi naryTree(const Bi naryTree& ot her);

23.6 INHERITANCE

Most of the programs that you will write in future will be "object based". Y ou will
analyze a problem, identify "objects" that will be present at run-time in your program,
and determine the "classes" to which these objects belong. Then you will design the
various independent classes needed, implement them, and write a program that creates
instances of these classes and allows them to interact.

Independent classes? That isn't always the case.

In some circumstances, in the analysis phase or in the early stages of the design
phase you will identify similarities among the prototype classes that you have proposed
for your program. Often, exploitation of such similarities leads to an improved design,
and sometimes can lead to significant savings in implementation effort.

23.6.1 Discovering similarities among prototype classes

Suppose that you and some colleagues had to write a "Macintosh/Windows" program
for manipulating electrical circuits, the simple kinds of circuit that can be made with
those "Physics is Fun" sets that ambitious parents buy to disappoint their kids at Xmas.
Those kits have wires, switches, batteries, lamp-bulbs and resistors, and sometimes
more. A program to simulate such circuits would need an editing component that
allowed a circuit to be laid out graphically, and some other part that did al the "Ohm's
Law" and "Kirchoff's Law" calculations to calculate currents and "light up" the
simulated bulbs.



Discovering similarities 821

You have used "Draw" programs so you know the kind of interface that such a
program would have. There would be a "palette of tools" that a user could use to add
components. The components would include text (paragraphs describing the circuit),
and circuit elements like the batteries and light bulbs. The editor part would allow the
user to select a component, move it onto the main work area and then, by doubly
clicking the mouse button, open a dialog window that would allow editing of text and
setting parameters such as aresistance in ohms. Obviously, the program would have to
let the user save a partially designed circuit to a file from where it could be restored
later.

What objects might the program contain?

The objects are all pretty obvious (at least they are obvious once you've been playing
this game long enough). The following are among the more important:

e A "document" object that would own al the data, keep track of the components Objects needed
added and organize transfers to and from disk.

e Variouscollections, either "lists" or "dynamic arrays" used to store items. Lets call
them "lists" (although, for efficiency reasons, areal implementation would
probably use dynamic arrays). These lists would be owned by the "document".
There might be alist of "text paragraphs’ (text describing the circuit), a"list of
wires', a"list of resistors" and so forth.

e A "palette object”. Thiswould respond to mouse-button clicks by giving the

document another battery, wire, resistor or whatever to add to the appropriate list.

A "window" or "view" object used when displaying the circuit.

Some "dialog" objects' used for input of parameters.

Lots of "wire" objects.

Several "resistor objects’.

A few "switch" objects’.

A few "lamp bulb" objects".

and for acircuit that actually does something

e Atleast one battery object.

For each, you would need to characterize the class and work out alist of data owned
and functions performed.

During a preliminary design process your group would be right to come up with
classes Battery, Document, Palette, Resistor, Switch. Each group member could work
on refining one or two classes leading to an initial set of descriptions like the following:

*  class TextParagraph Preliminary design
Owns: ideasfor classes
ablock of text and arectangle defining position in main view (window).
Does:

GetText() — uses a standard text editing dialog to get text changed;
FollowM ouse() — responds to middle mouse button by following mouse
to reposition within view;

DisplayText() - drawsitself in view;



822 Intermediate class

Rect() — returns bounding rectangle;
ééve() and Restore() - transfers text and position details to/.from file.

e classBattery

owns:
Position in view, resistance (internal resistance), electromotive force,
possibly atext string for some label/name, unique identifier, identifiers
of connecting wires...

Does:
GetVoltStuff() — uses adialog to get voltage, internal resistance etc.
TrackMouse() — respond to middle mouse button by following mouse to
reposition within view;
DrawBat() - draws itself in view;
AddWire() —add a connecting wire;
Area() — returns rectangle occupied by battery in display view;

Il:.’l..lt() and Get() — transfers parameters to/from file.

e classResistor

owns:
Position in view, resistance, possibly atext string for some label/name,
unique identifier, identifiers of connecting wires...

Does:
GetResistance() — uses adialog to get resistance, label etc.
Move() — respond to middle mouse button by following mouse to
reposition within view;
Display() - drawsitself in view;
Place() — returns area when resistor gets drawn;

i?”eadFrom() and WriteTo() — transfers parameters to/from file.

Y ou should be able to sketch out pseudo code for some of the main operations. For
example, the document's function to save data to a file might be something like the
following:

Prototype code using Docunent : : DoSave
instances of classes write paragraphList.Length()
iterator i1(paragraphList)
for il.First(), !'il. IsDone() do
paragraph_ptr = il.Qurrentlten();
par agr aph_ptr - >Save()
i 1. Next();

wite BatteriesList.Length()

iterator i2(BatteriesList)

for i2. First, !i2. IsDone() do
battery_ptr = i2 Qurrentlten()



Discovering similarities 823

battery_ptr->Put()

The function to display all the data of the document would be rather similar:

Docunent : : Draw
iterator i1(paragraphlList)
for il.First(), !il IsDone() do
paragraph_ptr = il.CQurrentlten();
par agr aph_pt r - >Di spl ayText ()
i1 Next();

iterator i2(BatteriesList)

for i2.First, 'i2. IsDone() do
battery ptr = i2 Qurrentlteny()
battery_ptr->DrawBat ()

Another function of "Document” would sort out which data element was being picked
when the user wanted to move something using the mouse pointer:

Docunent : : Let User MoveSonet hi ng( Poi nt nmousePoi nt)

iterator i1(paragraphList)

Par agraph *pp = NULL;

for il.First(), !il. IsDone() do
paragraph_ptr = il.Qurrentlten();
Rectangl e r = paragraph_ptr->Rect ()
i f(r.Contains(mousePoi nt) pp = paragraph_ptr;
i1 Next();

if(pp !'= NULL)
pp- >Fol | owMbuse()
return

iterator i2(BatteriesList)

battery *pb

for i2.First, 'i2. 1sDone() do
battery_ptr = i2. Qurrentlten()
Rectangle r = battery_ptr ->Area()
if(r.Contai ns(rmousePoint) pb = battery ptr ;
i 2. Next();

if(pb !'= NULL)
pb- >Tr ackMouse()
return



824

Intermediate class

Design problems?

Similarities among
classes

A class hierarchy

An pure " abstract”
class

Concreteclass
TextParagraph

Partially abstract
class CircuitThing

Concrete class Wire

Partially abstract
class Component

By now you should have the feeling that there is something amiss. The design with
its "batteries’, "wires", "text paragraphs’ seems sensible. But the code is coming out
curiously clumsy and unattractive in itsinconsistencies.

Batteries, switches, wires, and text paragraphs may be wildly different kinds of
things, but from the perspective of "document” they actually have some similarities.

They are all "things' that perform similar tasks. A document can ask a "thing" to:

Save yoursdlf to disk;

Display your editing dialog;

Draw yourself;

Track the mouse as it moves and reposition yourself;

Some "things" are more similar than others. Batteries, switches, and resistors will
all have specific roles to play in the circuit simulation, and there will be many
similarities in their roles. Wires are also considered in the circuit simulation, but their
role is quite different, they just connect active components. Text paragraphs don't get
involved in the circuit simulation part. So all of them are "storable, drawable, editable"
things, some are "circuit things', and some are "circuit things that have resistances’.

You can represent such relationships among classes graphically, as illustrated in
Figure 23.5. Asshown there, thereisakind of hierarchy.

Class Thing captures just the concept of some kind of data element that can draw
itself, saveitself to file and so forth. There are no data elements defined for Thing, it is
purely conceptual, purely abstract.

A TextParagraph is a particular kind of Thing. A TextParagraph does own data, it
owns its text, its position and so forth. You can also define actua code specifying
exactly how a TextParagraph might carry out specific tasks like saving itself to file.
Whereas class Thing is purely conceptual, a TextParagraph is something pretty real,
pretty “concrete". You can "see" a TextParagraph as an actual data structure in a
running program.

In contrast, a CircuitThing is somewhat abstract. Y ou can define some properties of
a CircuitThing. All circuit elements seem to need unique identifiers, they need
coordinate data defining their position, and they need a character string for a name or a
label. You can even define some of the code associated with CircuitThings — for
instance, you could define functions that access coordinate data.

Wires are special kinds of CircuitThings. It iseasy to define them completely. They
have a few more data fields (e.g. identifiers of the components that they join, or maybe
coordinates for their endpoints). It is aso easy to define completely how they perform
all the functions like saving their datato file or drawing themselves.

Components are a different specialization of CircuitThing. Components are
CircuitThings that will have to be analyzed by the circuit simulation component of the
program. So they will have data attributes like "resistance", and they may have many
additional forms of behaviour as required in the simulation.



Discovering similarities 825

P
TextParagraph "
oy N CircuitThing*
e e —3
/;" V\
-""’“’ ir-“
TN i
{- Wire - Componen
-\.'--L ‘.-’,L .,-,-

AN

™

Battery - SW|tch .:‘ . Resistor

l.} - ¢ & \‘
- -‘lr-_-‘—': ‘L'."-‘_’l ‘N\-‘_\_,_J

Figure 23.5 Similarities among classes.

Naturally, Battery, Switch, and Resistor define different specializations of thisidea Concrete classes
of Component. Each will have its unique additional data attributes. Each can define a Battery, Switch, ...
real implementation for functions like Draw().

The benefits of a class hierarchy

OK, such a hierarchy provides a nice conceptual structure when talking about a
program but how doesit really help?
One thing that you immediately gain is consistency. In the original design sketch, Consistency

text paragraphs, batteries and so forth all had some way of defining that these data
elements could display themselves, save themselves to file and so forth. But each class
was dlightly different; thus we had Text Par agr aph: : Save(),Battery:: Put () and
Resistor:: WiteTo(). The hierarchy allows us to capture the concept of
"storability” by specifying in class Thi ng the ability WiteTo(). While each



826

Intermediate class

Design
simplifications

Functions exploiting
similarities

Extendability

Code sharing

specialization performsWi t eTo() in aunique way, they can at least be consistent in
their names for this common behaviour. But consistency of naming isjust a beginning.

If you exploit such similarities, you can greatly simplify the design of the overall
application as can be seen by re-examining some of the tasks that a Document must
perform.

While you might want separate lists of the various specialized Conponent s (as this
might be necessary for the circuit simulation code), you could change Docunent so that
it stores data using a single t hi ngLi st instead of separate par agr aphlLi st ,
BatteriesList and so forth. This would allow simplification of functions like
DoSave():

Docurrent : : DoSave( ..)
wite thingList.Length()
iterator i1(thingList)
for il.First(), !il. IsDone() do
thing_ptr =il Qurrentlten();
thing_ptr->WiteTo()
i 1. Next();

Docurent : : Draw
iterator i1(thingList)
for il.First(), !'il IsDone() do
thing_ptr =il Qurrentlten();
thing_ptr->Draw()
i 1. Next();

Docurrent : : Let User MoveSorret hi ng( Poi nt nousePoi nt)

iterator i1(thingList)

Thing *pt = NULL;

for il.First(), !il. IsDone() do
thing_ptr =il Qurrentlten();
Rectangle r = thing_ptr ->Area()
i f(r.Contai ns(mousePoint) pt = thing_ptr ;
i 1. Next();

if(pt !'= NULL)
pt - >Tr ackMouse()
return

The code is no longer obscured by all the different special cases. The revised code is
shorter and much more intelligible.

Note also how the revised Document no longer needs to know about the different
kinds of circuit component. This would prove useful later if you decided to have
another component (e.g. class Voltmeter); you wouldn't need to change the code of
Docurent in order to accommodate this extension.

The most significant benefit is the resulting simplification of design, and
simultaneous acquisition of extendability. But you may gain more. Sometimes, you
can define the code for a particular behaviour at the level of a partially abstract class.
Thus, you should be able to define the access function for getting a G rcui t Thing' s



Discovering similarities 827

identifier at the level of classG r cui t Thi ng while class Conponent can define the code
for accessing a Conponent 's electrical resistance. Defining these functions at the level
of the partially abstract classes saves you from writing very similar functions for each
of the concrete classeslike Bat t er y, Resi st or , €c.

23.6.2 DEFINING CLASS HIERARCHIES IN C++

C++ allows you to define such hierarchical relations amongst classes. So, there is a
way of specifying "class Thi ng represents the abstract concept of a storable, drawable,
moveable data el ement", "class Text Par agr aph isakind of Thi ng that looks after text
and...".

You start by defining the "base class', in this case that is class Thi ng which is the
base class for the entire hierarchy:

class Thing {

public:
virtual ~Thing() { }
/* Dsk 1/O*/
virtual void ReadFron(istrean& i s) = 0;
virtual void WiteTo(ostrean& os) const = 0;
/* QG aphics */
virtual void Draw() const = 0;
/* nouse interactions */
virtual void DoD alog() = 0; /1 For double click
virtual void TrackMuse() = /1 Mouse sel ect and drag
virtual Rect Area() const =

b

Class Thi ng represents just an idea of a storable, drawable data element and so naturally
i tissimply alist of function names.

The situation is alittle odd. We know that all Thi ngs can draw themselves, but we
can't say how. The ability to draw is common, but the mechanism depends very much
on the specialized nature of the Thi ng that is asked to draw itself. In class Thi ng, we
have to be able to say "all Thi ngs respond to aDraw() request, specialized Thi ng
subclasses define how they do this".

Thisiswhat the keyword vi rt ual and the odd = 0 notation are for.

Roughly, the keyword vi r t ual identifies afunction that a class wants to define in
such away that subclasses may later extend or otherwise modify the definition. The =0
part means that we aren't prepared to offer even a default implementation. (Such
undefined virtual functions are called "pure virtual functions".)

In the case of class Thi ng, we can't provide default definitions for any of the
functions like Draw(),WiteTo() and so forth. The implementations of these
functions vary too much between different subclasses. This represents an extreme case;

Base class

virtual keyword and
=0 definition



828

Intermediate class

virtual destructor

Thing* variables

Derived classes

Public derivation tag

often you can provide a default implementation for avi rt ual function. This default
definition describes what "usually" should be done. Subclasses that need to something
different can replace, or "override", the default definition.

The destructor, ~Thi ng() , does have adefinition: vi rt ual ~Thing() { }. The
definition is an empty function; basically, it saysthat by default there is no tidying up to
be done when a Thi ng is deleted. The destructor isvi rt ual . Subclasses of class
Thi ng may be resource managers (e.g. a subclass might allocate space for an object
label as a separate character array in the heap). Such specialized Thi ngs will need
destructors that do some cleaning up.

A C++ compiler prevents you from having variables of type Thi ng:

Thi ng aThi ng; /1l illegal, Thing is an abstraction

Thisis of course appropriate. You can't have Thi ngs. You can only have instances of
specialized subclasses. (Thisis standard whenever you have a classification hierarchy
with abstract classes. After all, you never see "mammals’ walking around, instead you
encounter dogs, cats, humans, and horses — i.e. instances of specialized subclasses of
class mammal). However, you can have variables that are Thi ng* pointers, and you
can define functions that take Thi ng& reference arguments:

Thing *first_thing;

The pointer fi rst_thi ng can hold the address of (i.e. point to) an instance of class
Text Par agr aph, or it might point to aW r e object, or point to aBat t er y object.

Once you have declared class Thi ng, you can declare classes that are "based on" or
"derived from" this class:

cl ass Text Paragraph : public Thing {
Text Par agr aph(Point topleft);
virtual ~TextParagraph();
/[* Disk I/O*/
virtual void ReadFron(istrean& is);
virtual void WiteTo(ostream& os) const;
[* @ aphics */
virtual void Draw() const;
/* mouse interactions */
virtual void DoDialog(); /1 For double click
virtual void TrackMuse(); // Muse select and drag
virtual Rect Area() const;
/1 Menber functions that are uni que to Text Paragraphs
voi d Edi t Text ();

private:
// Data needed by a Text Paragraph
Point  fTopLeft;
char *f Text ;



Defining class hierarchies 829

b

class GrcuitThing : public Thing {
GrcuitThing(int ident, Point where);
virtual ~QrcuitThing();

/* Disk 1/0*
virtual void ReadFron{istrean& is);
virtual void WiteTo(ostream& os) const;

// Additional nenber functions that define behaviours
/1l characteristic of all kinds of QG rcuitThing
int Getld() const { return this->fld }
virtual Rect Area() const {
return Rect(
this->flocation.x - 8, this->flocation.y - 8,
this->flocation.x + 8, this->flocation.y + 8);

virtual double Qurrent() const = 0;

pr ot éét ed: Protected access
// Data needed by a G rcuitThing specifier
int fld;

Point flocation;
char *f Label ;

b

In later studies you will learn that there are a variety of different ways that Different forms of
"derivation" can be used to build up class hierarchies. Initialy, only one form js derivation
important. The important form is "public derivation". Both Text Par agr aph and
G rcui t Thi ng are"publicly derived” from class Thi ng:

cl ass Text Paragraph : public Thing {
Yoo
class GrcuitThing : public Thing {
b

Public derivation acknowledges that both Text Par agr aph and Gi r cui t Thi ng are public derivation
specialized kinds of Thi ngs and so code "using Thi ngs" will work with
Text Par agr aphs or Ci r cui t Thi ngs. Thisis exactly what we want for the example
where the Docunent object has alist of "pointersto Thi ngs" and all its code is of the
formt hi ng_pt r - >DoSonet hi ng() .

We need actual Text Par agr aph objects. Thisclass hasto be "concrete”. Theclass TextParagraph, a
declaration has to be complete, and all the member functions will have to be defined. concrete class



830

Intermediate class

CircuitThing, a
partially implemented
abstract class

Naturally, the class declaration starts with the constructor(s) and destructor. Then it
will have to repeat the declarations from class Thi ng; so we again get functions like
Draw() being declared. Thistime they don't have those = 0 definitions. There will
have to be definitions provided for each of the functions. (It is not actually necessary to
repeat the keyword vi r t ual ; this keyword need only appear in the class that introduces
the member function. However, it isusually simplest just to "copy and paste” the block
of function declarations and so have the keyword.) Class Text Par agr aph will
introduce some additional member functions describing those behaviours that are
unique to Text Par agr aphs. Some of these additional functions will be in the public
interface; most would be private. Class Text Par agr aph would also declare al the
private data members needed to record the data possessed by a Text Par agr aph object.

Class Ci r cui t Thi ng isan in between case. It isnot a pure abstraction like Thi ng,
nor yet is it a concrete class like Text Par agr aph. Its main roleis to introduce those
member functions needed to specify the behaviours of all different kinds of
Ci rcui t Thi ng and to describe those data members that are possessed by all kinds of
G rcui t Thi ng.

Class Ci rcui t Thi ng cannot provide definitions for al of those pure virtual
functions inherited from class Thi ng; for instance it can't do much about Draw() . It
should not repeat the declarations of those functions for which it can't give a definition.
Virtua functions only get re-declared in those subclasses where they are finally defined.

Class Ci r cui t Thi ng can specify some of the processing that must be done when a
Ci r cui t Thi ng getswritten to or read from afile on disk. Obvioudly, it cannot specify
everything; each specialized subclass has its own datato save. But G r cui t Thi ng can
define how to deal with the common data like the identifier, location and label:

void G rcuitThing:: WiteTo(ostrean& os) const

{ I/ keyword virtual not repeated in definition
0os << fld << endl;
0os << flocation.x << " " << flLocation.y << endl;
0s << flabel << endl;

}

void Q rcuitThing:: ReadFron{istrean& i s)

{
is > fld;
is >> flLocation.x >> fLocation.y;
char buf f[ 256] ;
is.getline(buff,255,'\n");
delete [] fLabel; // get rid of existing |abel
fLabel = new char[strlen(buff) + 1];
strcpy(fLabel, buff);

}

These member functions can be used by the more elaborate WiteTo() and
ReadFron() functionsthat will get defined in subclasses. (Note the deletion of f Label



Defining class hierarchies 831

and allocation of a new array; this is another of those places where it is easy to get a

memory leak.)
The example illustrates that there are three possibilities for additional member
functions:

int Getld() const { return this->fld }
virtual Rect Area() const {
return Rect(
this->flocation.x - 8, this->flocation.y - 8,
this->flocation.x + 8, this->flocation.y + 8);

virtual double Qurrent() const = 0;

Function Get I d() isnot avirtual function. Class Ci r cui t Thi ng defines an
implementation (return the f 1 d identifier field). Because the function is not virtual,
subclasses of Ci r cui t Thi ng cannot change this implementation. You use this style
when you know that there is only one reasonable implementation. for a member
function.

Function Area() has a definition. It creates a rectangle of size 16x16 centred
around the f Locat i on point that defines the centre of aCi r cui t Thi ng. This might
suit most specialized kinds of Gi r cui t Thi ng; so, to economise on coding, this default
implementation can be defined at this level in the hierarchy. Of course, Area() isdtill
avirtual function because that was how it was specified when first introduced in class
Thi ng ("Once a virtual function, always a virtual function"). Some subclasses, e.g.
class W r e, might need different definitions of Ar ea() ; they can override this default
definition by providing their own replacement.

Function Qurrent () isan additional pure virtual function. The circuit simulation
code will require all circuit elements know the current that they have flowing. But the
way this gets cal culated would be class specific.

Class Ci r cui t Thi ng declares some of the data members — f1d, f Label , and
f Locat i on. Thereisapotentia difficulty with these data members.

These data members should not be publ i c¢; you don't want the data being accessed
from anywhere in the program. But if the data members are declared as pri vat e, they
really are private, they will only be accessible from the code of class Ci r cui t Thi ng
itself. But you can see that the various specialized subclasses are going to have
legitimate reasons for wanting to use these variables. For example, all the different
versions of Draw() are going to need to know where the object is located in order to do
the correct drawing operations.

You can't use the "f ri end" mechanism to partially relax the security. When you
define class Ci r cui t Thi ng you won't generally know what the subclasses will be so
you can't nominate them as friends.

There has to be a mechanism to prevent external access but allow access by
subclasses- so thereis. Thereis athird level of security on members. In addition to
publ i c and pri vat e, you can declare data members and member functions as being

A non-virtual
member function

A defined, virtual
member function

Another pure virtual
function

Access to members

" protected” data



832

Intermediate class

Thing declared
behaviours

CircuitThing
behaviours
Own unique
behaviours

prot ect ed. A prot ect ed member is not accessible from the main program code but
can be accessed in the member functions of the class declaring that member, or in the
member functions of any derived subclass.

Here, variables like f Locat i on should be defined as pr ot ect ed. Subclasses can
then use the f Locat i on datain their Draw() and other functions. (Actualy, it is
sometimes better to keep the data members private and provide extra protected access
functions that allow subclasses to get and set the values of these data members. This
technique can help when debugging complex programs involving elaborate class
hierarchies).

Once the definition of class G r cui t Thi ng is complete, you have to continue with
its derived classes. classW r e, and class Conponent :

class Wre : public GrcuitThing {
public:
Wre(int startconponent, int endconmponent, Point pl, Point p2);
~Wre();
/* Disk 1/O*/
virtual void ReadFron{(istrean& is);
virtual void WiteTo(ostrean& os) const;
/* QG aphics */
virtual void Draw() const;
/* mouse interactions */
virtual void DoDialog(); // For double click
virtual void TrackMuse(); // Muse select and drag
virtual Rect Area() const;
virtual double Qurrent() const;

|nt FirstEndld() { return this->fFirstEnd; }

private:
i nt fFirstEnd;

b

Class W r e is meant to be a concrete class; the program will use instances of this class.
So it has to define all member functions.

The class repeats the declarations for all those vi rtual functions, declared in
classes from which it is derived, for which it wants to provide definitions (or to change
existing definitions). Thus class W r e will declare the functions like Draw() and
Current (). ClassW r e aso declaresthe ReadFron() andWiteTo() functionsas
these have to be redefined to accommodate additional data, and it declares Area() asit
wants to use a different size.

Class W r e would also define additional member functions characterising its unique
behaviours and would add some data members. The extra data members might be
declared aspri vat e or prot ect ed. You would declare them aspri vat e if you knew
that no-one was ever going to try to invent subclasses based on your classW r e. If you
wanted to allow for the possibility of specialized kinds of W r e, you would make these



Defining class hierarchies 833

extra data members (and functions) pr ot ect ed. Y ou would then also have to define the
destructor asvi rt ual .

The specification of the problem might disallow the user from dragging a wire or
clicking on awire to open adialog box. Thiswould be easily dealt with by making the
Area() function of aW re return a zero sized rectangle (rather than the fixed 16x16
rectangle used by other G r cui t Thi ngs):

Rect Wre:: Area() const
{

}

return Rect (0, 0, 0, 0);

(The program identifies the Thi ng being selected by testing whether the mouse was
located in the Thi ng's area; so if aThi ng'sareais zero, it can never be selected.) This
definition of Area() overridesthat provided by G r cui t Thi ng.

A W r e hasto save all the standard Ci r cui t Thi ng data to file, and then save its
extradata. Thiscan be done by havingaWre:: WiteTo() functionthat makesuse of
the inherited function:

void Wre:: WiteTo(ostrean& os)

{
GrcuitThing: : WiteTo(os);
0s << fFirstEnd << " " << fSecondEnd << endl;

}

This provides another illustration of how inheritance structures may lead to small
savings of code. All the specialized subclasses of Ci r cui t Thi ng useits codeto save
theidentifier, label, and location.

23.6.3 BUT HOW DOES IT WORK?!

The example hierarchy illustrates that you can define a concept like Thi ng that can save
itself to disk, and you can define many different specific classes derived from Thi ng
that have well defined implementations — Text Par agr aph: : Wi teTo(),Battery::

WiteTo(),Wre::WiteTo(). Butthecodefor Document would be something like:

voi d Docunent : : DoSave( ost r ean& out)

{
out << thingList.Length() << endl;

iterator i1(thingList);
il.First();
whil e(!i 1. 1sDone()) {
Thing* thing_ptr = (Thing*) il.Qurrentlten();



834

Intermediate class

virtual tables

thing_ptr ->WiteTo(out);
i 1. Next();

}
}

The code generated for

thing_ptr ->WiteTo()

isn't supposed to invoke function Thi ng: : Wi teTo(). After all, this function doesn't
exist (it was defined as = 0). Instead the code is supposed to invoke the appropriate
specialized version of Wit eTo().

But which is the appropriate function? That is going to depend on the contents of
t hi ngLi st. Thet hi ngLi st will contain pointers to instances of class Text Par agr aph,
classBat t ery, classSwi t ch and so forth. These will be all mixed together in whatever
order the user happened to have added them to the Docunment . So the appropriate
function might be Battery:: WiteTo() for the first Thi ng in the list,
Resistor::WiteTo() forthesecond list element,and Wre:: WiteTo() forthe
third. You can't know until you are writing the list at run-time.

The compiler can't work things out at compile time and generate the instruction
sequence for a normal subroutine call. Instead, it has to generate code that works out
the correct routine to use at run time.

The generated code makes use of tables that contain the addresses of functions.
There is atable for each class that uses vi rt ual functions; a class's table contains the
addresses of its (virtual) member functions. The table for class W r e would, for
example, contain pointers to the locations in the code segment of each of the functions
Wre::ReadFron(),Wre::WiteTo(), Wre::Draw) andsoforth. Similarly, the
virtual table for class Battery will have the addresses of the functions
Battery: : ReadFron{) andsoon. (Thesetablesare known as"virtud tables'.)

In addition to its declared data members, an object that is an instance of a class that
uses vi rt ual functions will have an extra pointer data member. This pointer data
member holds the address of the virtual table that has the addresses of the functions that
are to be used in association with that object. Thus every W r e object has a pointer to
the W r e virtual table, and every Bat t er y object has a pointer to the Bat t er y virtual
table. A simpleversion of the schemeisillustrated in Figure 23.6

The instruction sequence generated for something like:

thing_ptr ->WiteTo()

involves first using the link from the object pointed to by t hi ng_ptr to get the location
of the table describing the functions. Then, the required function, Wit eTo(), is
"looked up" in this table to find where it is in memory. Finally, a subroutine call is
made to the actual Wit eTo() function. Although it may sound complex, the process
requires only three or four instructions!



How inheritance works: dynamic binding 835

Code segment "Virtual Tables"

pointers to code
for functions

Text's Wire's Battery's M
code code code
Heap
(pointers link objects to
appropriate virtual table)
Battery  Wirel Wire2 Text
1 1

Figure 23.6  Virtual tables.

Function lookup at run time is referred to as "dynamic binding". The address of the Dynamic binding
function that is to be called is determined ("bound") while the program is running
(hence "dynamically”). Normal function calls just use the machine's JSR (jump to
subroutine) instruction with the function's address filled in by the compiler or linking
loader. Since this is done before the program is running, the normal mechanism of
fixing addresses for subroutine calls is said to use static binding (the address is fixed,
bound, before the program is moving, or whileit is static).
It is this "dynamic binding" that makes possible the simplification of program
design. Things like Document don't have to have code to handle each special case.
Instead the code for Docunent isgeneral, but the effect achieved is to invoke different
special case functions as required.
Another term that you will find used in relation to these programming styles is Polymorphism
"polymorphism". This is just an anglicisation of two Greek words — poly meaning
many, and morph meaning shape. A Document owns alist of Thi ngs; Thi ngs have
many different shapes — some are text paragraphs, others are wires. A pointer like
t hi ng_ptr isa"polymorphic" pointer in that the thing it points to may, at different
times, have different shapes.



836

Intermediate class

23.6.4 MULTIPLE INHERITANCE

You are not limited to single inheritance. A class can be derived from a number of
existing base classes.

Multiple inheritance introduces all sorts of complexities. Most uses of multiple
inheritance are inappropriate for beginners. There is only one form usage that you
should even consider.

Multiple inheritance can be used as a "type composition" device. Thisis just a
systematic generalization of the previous example where we had class Thi ng that
represented the type "a drawable, storable, editable data item occupying an area of a
window".

Instead of having class Thi ng as a base class with all these properties, we could
instead factor them into separate classes:

class Storable {

public:
virtual ~Storable() { }
virtual void WiteTo(ostrean& const = O;
virtual void ReadFron{istrean& const = O;

b

void Drawabl e {

public:
virtual ~Drawable() { }
virtual void Draw() const
virtual Rect Area() const

inon
ee

b

This allows "mix and match". Different specialized subclasses can derive from chosen
base classes. As a Text Par agr aph isto be both storable and drawable, it can inherit
from both base classes:

class TextParagraph : public Storable, public Drawable {

¥
You might have another class, Decor at i on, that provides some pretty outline or
shadow effect for a drawable item. You don't want to store Decor at i on objectsina

file, they only get used while the program is running. So, the Decor at i on classonly
inherits from Dr awabl e:

cl ass Decoration : public Drawable {

i



Multiple Inheritance 837

As additional examples, consider classPri nt abl e and class Conpar abl e:

class Printable {
public:
virtual ~Printable() { }
virtual void PrintOn(ostrean& out) const = 0;

b

ost rean®& oper at or <<(ostrean& o, const Printabl e& p)

{ p.Printn(0); return o; }

ost rean®& oper at or<<(ostrean& o, const Printable *p_ptr)
{ p_ptr->Printn(o); return o; }

cl ass Conparabl e {
public:
virtual ~Conparable() { }
virtual int Conpare(const Conparable* ptr) const = O;
i nt Conpare(const Conparabl e& ot her) const
{ return Conpare(&other); }

i nt operat or==(const Conpar abl e& ot her) const
{ return Conpare(other) == 0; }

int operator!=(const Conparabl e& ot her) const
{ return Conpare(other) !'=0; }

i nt operator<(const Conparabl e& other) const
{ return Conpare(other) < O0; }

i nt operat or<=(const Conpar abl e& ot her) const
{ return Conpare(other) <= 0; }

i nt operator>(const Conparabl e& ot her) const
{ return Conpare(other) > 0; }

i nt operat or >=(const Conpar abl e& ot her) const
{ return Conpare(other) >=0; }

¥

Class Pri nt abl e packages the idea of a class with a Pri nt On() function and
associated global oper at or <<() functions. Class Conpar abl e characterizes data items
that compare themselves with similar dataitems. It declares a Conpar e() function that
isalittlelike strcnp();itshould return-1if the first item is smaller than the second,
zero if they are equal, and 1 if the first is greater. The class also defines a set of
operator functions, like the "not equals function" operator ! =() and the "greater than"
function oper at or >() ; al involve calls to the pure virtual Conpar e() function with
suitable tests on the result code. (The next chapter has some example Conpar e()
functions.)
Asnoted earlier, another possible pure virtual base classwould beclass| t erat or:

class Iterator {

public:
virtual ~lterator() { }
virtual void First(void) = 0;



838

Intermediate class

virtual void Next(void) = 0;
virtual int | sDone(voi d) const = 0;
virtual void *Qurrentlten{void) const = 0;

b

This would allow the creation of a hierarchy of iterator classes for different kinds of
data collection. Each would inherit from class |t erat or .

Now inventing classes like St or abl e, Conpar abl e, and Dr awabl e is not atask for
beginners. Y ou need lots of experience before you can identify widely useful abstract
concepts like the concept of storability. However you may get to work with library
code that has such general abstractions defined and so you may want to define classes
using multiple inheritance to combine different data types.

What do you gain from such use of inheritance as a type composition device?

Obviousdly, it doesn't save you any coding effort. The abstract classes from which
you multiply inherit are exactly that — abstract. They have no data members. All, or
most, of their member functions are pure virtual functions with no definitions. If any
member functions are defined, then asin the case of class Conpar abl e, these definitions
simply provide alternative interfaces to one of the pure virtual functions.

Y ou inherit, but the inheritance is empty. Y ou have to define the code.

The advantage is not for the implementor of a subclass. Those who benefit are the
maintenance programmers and the designers of the overall system. They gain because
if aproject uses such abstract classes, the code becomes more consistent, and easier to
understand. The maintenance programmer knows that any class whose instances are to
be stored to file will use the standard functions ReadFrom() and WiteTo(). The
designer may be able to simplify the design by using collections of different kinds of
objects as was done with the Docurrent example.

23.6.5 USING INHERITANCE

There are many further complexities related to inheritance structures. One day you may
learn of things like "private inheritance", "virtual base classes', "dominance" and
others. You will discover what happens if a subclass tries to "override”" a function that
was not declared as vi r t ual inthe classthat initially declared it.

But these are all advanced, difficult features.

The important uses of inheritance are those illustrated — capturing commonalities to
simplify design, and using (multiple) inheritance as a type composition device. These
uses will be illustrated in later examples. Most of Part V of this text is devoted to
simple uses of inheritance.



