
23 Intermediate class
The class construct has many ramifications and extensions, a few of which are
introduced in this chapter.

Section 23.1 looks at the problem of data that need to be shared by all instances of a
class. Shared data are quite common. For example, the air traffic control program in
Chapter 20 had a minimum height for the aircraft defined by a constant; but it might be
reasonable to have the minimum height defined by a variable (at certain times of the
day, planes might be required to make their approaches to the auto lander somewhat
higher say 1000 feet instead of 600 feet). The minimum height would then have to be a
variable. Obviously, all the aircraft are subject to the same height restriction and so
need to have access to the same variable. The minimum height variable could be made
a global; but that doesn't reflect its use. If really is something that belongs to the
aircraft and so should somehow belong to class Aircraft. C++ classes have "static"
members; these let programmers define such shared data.

Section 23.2 introduces "friends". One of the motivations for classes was the need
to build privacy walls around data and specialist housekeeping functions. Such walls
prevent misuse of data such as can occur with simple structs that are universally
accessible. Private data and functions can only be used within the member functions of
the class. But sometimes you want to slightly relax the protection. You want private
data and functions to be used within member functions, and in addition in a few other
functions that are explicitly named. These additional functions may be global
functions, or they may be the member functions of some second class. Such functions
are nominated as "friends" in a class declaration. (The author of a class nominates the
friends if any. You can't come along later and try to make some new function a "friend"
of an existing class because, obviously, this would totally defeat the security
mechanisms.) There aren't many places where you need friend functions. They
sometimes appear when you have a cluster of separate classes whose instances need to
work together closely. Then you may get situations where there a class has some data
members or functions that you would like to make accessible to instances of other
members of the class cluster without also making them accessible to general clients.

23

"static" class
members for shared
data

Friends – sneaking
through the walls of
privacy

788 Intermediate class

Iterators Section 23.3 introduces iterators. Iterator classes are associated with collection
classes like those presented in Chapter 21. An Iterator is very likely to be a "friend" of
the collection class with which it is associated. Iterators help you organize code where
you want to go through a collection looking at each stored item in turn.

My own view is that for the most part "operator functions", the topic of Section 23.4,
are an overrated cosmetic change to the ordinary function call syntax. Remember how
class Number in Chapter 19 had functions like Multiply() (so the code had things like
a.Multiply(b) with a and b instances of class Number)? With operator functions,
you can make that a * b. Redefining the meaning of operator * allows you to pretty
up such code.

Such cosmetic uses aren't that important. But there are a few cases where it is useful
to redefine operators. For instance, you often want to extend the interface to the
iostream library so that you can write code like Number x; … cout << "x = " << x
<< endl. This can be done by defining a new global function involving the <<
operator. Another special case is the assignment operator, operator =; redefinition of
operator = is explained in the next section on resource manager classes. Other operators
that you may need to change are the pointer dereference operator, -> and the new
operator. However, the need to redefine the meanings of these operators only occurs in
more advanced work, so you wont see examples in this text.

Instances of simple classes, like class Number, class Queue, class Aircraft are all
represented by a single block of data. But there are classes where the instances own
other data structures (or, more generally, other resources such as open files, network
connections and so forth). Class DynamicArray is an example; it owns that separately
allocated array of void* pointers. Classes List and BinaryTree also own resources;
after all, they really should be responsible for those listcells and treenodes that they
create in the heap.

Resource managers have special responsibilities. They should make certain that any
resources that they claim get released when no longer required. This requirement
necessitates a new kind of function – a "destructor". A destructor is a kind of
counterpart for the constructor. A constructor function initializes an object (possibly
claiming some resources, though usually additional resources are claimed later in the
object's life). A destructor allows an object to tidy up and get rid of resources before it
is itself discarded. The C++ compiler arranges for calls to be made to the appropriate
destructor function whenever an object gets destroyed. (Dynamic objects are destroyed
when you apply operator delete; automatic objects are destroyed on exit from
function; and static objects are destroyed during "at_exit" processing that takes place
after return from main().)

There is another problem with resource manager classes – assignment. The normal
meaning of assignment for a struct or class instance is "copy the bytes". Now the bytes
in a resource manager will include pointers to managed data structures. If you just copy
the bytes, you will get two instances of the resource manager class that both have
pointers to the same managed data structure. Assignment causes sharing. This is very
rarely what you would want.

Operator functions

Resource manager
classes

Destructor functions
for resource manager

classes

Operator = and
resource manager

classes

Introduction 789

If assignment is meaningful for a resource manager, its interpretation is usually
"give me a copy just like this existing X"; and that means making copies of any
managed resources. The C++ compiler can not identify the managed resources. So if
you want assignment to involve copying resources, you have to write a function does
this. This becomes the "assignment function" or "operator=()" function. You also
have to write a special "copy constructor".

Actually, you usually want to say "instances of this resource manager class cannot
be assigned". Despite examples in text books, there are very few situations in real
programs where you want to say something like "give me a binary tree like this existing
binary tree". There are mechanisms that allow you to impose constraints that prohibit
assignment.

The final section of this chapter introduces the idea of inheritance. Basically,
inheritance allows you to define a new class that in some way extends an existing
defined class. There are several different uses for inheritance and the implications of
inheritance are the main topic of Part V of this text.

Although your program may involve many different kinds of object, there are often
similarities among classes. Sometimes, it is possible to exploit such similarities to
simplify the overall design of a program. An example like this is used to motivate the
use of class hierarchies where specialized classes inherit behaviours from more general
abstract classes.

The next subsection shows how class hierarchies can be defined in C++ and explains
the meanings of terms like "virtual function". Other subsections provide a brief guide
to how programs using class hierarchies actually work and cover some uses of multiple
inheritance.

Preventing
assignment

Inheritance

23.1 SHARED CLASS PROPERTIES

A class declaration describes the form of objects of that class, specifying the various
data members that are present in each object. Every instance of the class is separate,
every instance holds its own unique data.

Sometimes, there are data that you want to have shared by all instance of the class.
The introduction section of this chapter gave the example of the aircraft that needed to
"share" a minimum height variable. For second example, consider the situation of
writing a C++ program that used Unix's Xlib library to display windows on an
Xterminal. You would probably implement a class Window. A Window would have
data members for records that describe the font to be used for displaying text, an integer
number that identifies the "window" actually manipulated by the interpretive code in
the Xterminal itself, and other data like background colour and foreground colour.
Every Window object would have its own unique data in its data members. But all the
windows will be displayed on the same screen of the same display. In Xlib the screen
and the display are described by data structures; many of the basic graphics calls require
these data structures to be included among the arguments.

790 Intermediate class

You could make the "Display" and the "Screen" global data structures. Then all the
Window objects could use these shared globals.

But the "Display" and the "Screen" should only be used by Windows. If you make
them globals, they can be seen from and maybe get misused in other parts of the
program.

The C++ solution is to specify that such quasi globals be changed to "class
members" subject to the normal security mechanisms provided by C++ classes. If the
variable that represents the minimum height for aircraft, or those that represent the
Display and Screen used by Windows, are made private to the appropriate classes, then
they can only be accessed from the member functions of those classes.

Of course, you must distinguish these shared variables from those where each class
instance has its own copy. This is done using the keyword static. (This is an
unfortunate choice of name because it is a quite different meaning from previous uses
of the keyword static.) The class declarations defining these shared variables would
be something like the following:

class Aircraft {
public:

Aircraft();
…

private:
static int sMinHeight;
int fTime;
PlaneData fData;

};

class Window {
public:

…
private:

static Screen sScreen;
static Display sDisplay;
GC fGC;
XRectangle fRect;
…

};

(As usual, it is helpful to have some naming convention. Here, static data members of
classes will be given names starting with 's'.)

The class declarations specify that these variables will exist somewhere, but they
don't define the variables. The definitions have to appear elsewhere. So, in the case of
class Aircraft, the header file would contain the class declaration specifying the
existence of the class data member sMinHeight, the definition would appear in the
Aircraft.cp implementation file:

#include "Aircraft.h"

Class declarations
with static data

members

Defining the static
variables

Shared class properties 791

int Aircraft::sMinHeight = 1000; // initialize to safe 1000' value

…
int Aircraft::TooLow()
{

return (fData.z < sMinHeight);
}

The definition must use the full name of the variable; this is the member name qualified
by the class name, so sMinHeight has to be defined as Aircraft::sMinHeight. The
static qualifier should not be repeated in the definition. The definition can include an
initial value for the variable.

The example TooLow() function illustrates use of the static data member from
inside a member function.

Quite often, such static variables need to be set or read by code that is not part of
any of the member functions of the class. For example, the code of the AirController
class would need to change the minimum safe height. Since the variable sMinHeight is
private, a public access function must be provided:

void Aircraft::SetMinHeight(int newmin) { sMinHeight = newmin;
}

Most of the time the AirController worked with individual aircraft asking them to
perform operations like print their details: fAircraft[i]->PrintOn(cout). But
when the AirController has to change the minimum height setting, it isn't working
with a specific Aircraft. It is working with the Aircraft class as a whole. Although
it is legal to have a statement like fAircraft[i]->SetMinHeight(600), this isn't
appropriate because the action really doesn't involve fAircraft[i] at all.

A member function like SetMinHeight() that only operates on static (class) data
members should be declared as a static function:

class Aircraft {
public:

Aircraft();
…
static void SetMinHeight(int newmin);

private:
static int sMinHeight;
int fTime;
PlaneData fData;

};

This allows the function to be invoked by external code without involving a specific
instance of class Aircraft, instead the call makes clear that it is "asking the class as a
whole" to do something.

Static member
functions

Class declarations
with static data and
function members

792 Intermediate class

Calling a static
member function

void AirController::ChangeHeight()
{

int h;
cout << "What is the new minimum? ";
cin >> h;
if((h < 300) || (h > 1500)) {

cout << "Don't be silly" << endl; return;
}

Aircraft::SetMinHeight(h);
}

You will find that most of the variables that you might initial think of as being
"globals" will be better defined as static members of one or other of the classes in
your program.

One fairly common use is getting a unique identifier for each instance of a class:

class Thing {
public:

Thing();
…

private:
static int sIdCounter;
int fId;
…

};

int Thing::sIdCounter = 0;

Thing::Thing() { fId = ++sIdCounter; … }

Each instance of class Thing has its own identifier, fId. The static (class) variable
sIdCounter gets incremented every time a new Thing is created and so its value can
serve as the latest Thing's unique identifier.

Use of statics

23.2 FRIENDS

As noted in the introduction to this chapter, the main use of "friend" functions will be to
help build groups (clusters) of classes that need to work closely together.

In Chapter 21, we had class BinaryTree that used a helper class, TreeNode.
BinaryTree created TreeNodes and got them to do things like replace their keys.
Other parts of the program weren't supposed to use TreeNodes. The example in
Chapter 21 hid the TreeNode class inside the implementation file of BinaryTree. The
header file defining class BinaryTree merely had the declaration class TreeNode;
which simply allowed it to refer to TreeNode* pointers. This arrangement prevents
other parts of a program from using TreeNodes. However, there are times when you
can't arrange the implementation like that; code for the main class (equivalent to

Friends 793

BinaryTree) might have to be spread over more than one file. Then, you have to
properly declare the auxiliary class (equivalent of TreeNode) in the header file. Such a
declaration exposes the auxiliary class, opening up the chance that instances of the
auxiliary class will get used inappropriately by other parts of the program.

This problem can be resolved using a friend relation as follows:

class Auxiliary {
friend class MainClass;

private:
Auxiliary();
int SetProp1(int newval);
void PrintOn(ostream&) const;
…
int fProp1;
…

};

class MainClass {
public:

…
};

All the member functions and data members of class Auxiliary are declared private,
even the constructor. The C++ compiler will systematically enforce the private
restriction. If it finds a variable declaration anywhere in the main code, e.g. Auxiliary
a 1 ; , it will note that this involves an implicit call to the constructor
Auxiliary::Auxiliary() and, since the constructor is private, the compiler will
report an access error. Which means that you can't have any instances of class
Auxiliary!

However, the friend clause in the class declaration partially removes the privacy
wall. Since class MainClass is specified to be a friend of Auxiliary, member
functions of MainClass can invoke any member functions (or data members) of an
Auxiliary object. Member functions of class MainClass can create and use instances
of class Auxiliary.

There are other uses of friend relations but things like this example are the main
ones. The friend relation is being used to selectively "export" functionality of a class to
chosen recipients.

A very private class

that has a friend

23.3 ITERATORS

With collection classes, like those illustrated in Chapter 21, it is often useful to be able
to step through the collection processing each data member in turn. The member
functions for List and DynamicArray did allow for such iterative access, but only in a
relatively clumsy way:

794 Intermediate class

DynamicArray d1;
…
…
for(int i = 1; i < d1.Length(); i++) {

Thing* t = (Thing*) d1.Nth(i);
t->DoSomething();
…
}

That code works OK for DynamicArray where Nth() is basically an array indexing
operation, but it is inefficient for List where the Nth() operation involves starting at
the beginning and counting along the links until the desired element is found.

The PrintOn() function for BinaryTree involved a "traversal" that in effect
iterated though each data item stored in the tree (starting with the highest key and
working steadily to the item with the lowest key). However the BinaryTree class
didn't provide any general mechanism for accessing the stored elements in sequence.

Mechanisms for visiting each data element in turn could have been incorporated in
the classes. The omission was deliberate.

Increasingly, program designers are trying to generalize, they are trying to find
mechanisms that apply to many different problems. General approaches have been
proposed for working through collections.

The basic idea is to have an "Iterator" associated with the collection (each collection
has a specialized form of Iterator as illustrated below). An Iterator is in itself a simple
class. Its public interface would be something like the following (function names may
differ and there may be slight variations in functionality):

class Iterator {
public:

Iterator(…);
void First(void);
void Next(void);
int IsDone(void);
void *CurrentItem(void);

private:
…

};

The idea is that you can create an iterator object associated with a list or tree collection.
Later you can tell that iterator object to arrange to be looking at the "first" element in
the collection, then you can loop examining the items in the collection, using Next() to
move on to the next item, and using the IsDone() function to check for completion:

Collection c1;
…
Iterator i1(c1);
i1.Start();
while(!i1.IsDone()) {

Iterators 795

Thing* t = (Thing*) i1.CurrentItem();
t->DoSomething();
…;
i1.Next();
}

This same code would work whether the collection were a DynamicArray, a List, or a
BinaryTree.

As explained in the final section of this chapter, it is possible to start by giving an
abstract definition of an iterator as a "pure abstract class", and then define derived
subclasses that represent specialized iterators for different types of collection. Here, we
won't bother to define the general abstraction, and will just define and use examples of
specialized classes for the different collections.

The iterators illustrated here are "insecure". If a collection gets changed while an
iterator is working, things can go wrong. (There is an analogy between an iterator
walking along a list and a person using stepping stones to cross a river. The iterator
moves from listcell to listcell in response to Next() requests; it is like a person
stepping onto the next stone and stopping after each step. Removal of the listcell where
the iterator is standing has an effect similar to magically removing a stepping stone
from under the feet of the river crosser.) There are ways of making iterators secure, but
they are too complex for this introductory treatment.

An "abstract base
class" for Iterators?

Insecure iterators

23.3.1 ListIterator

An iterator for class List is quite simple to implement. After all, it only requires a
pointer to a listcell. This pointer starts pointing to the first listcell, and in response to
"Next" commands should move from listcell to listcell. The code implementing the
functions for ListIterator is so simple that all its member functions can be defined
"inline".

Consequently, adding an iterator for class List requires only modification of the
header file:

#ifndef __MYLIST__
#define __MYLIST__

class ListIterator;

class List {
public:

List();

int Length(void) const;
…
friend class ListIterator;

private:
Nominate friends

796 Intermediate class

struct ListCell { void *fData; ListCell *fNext; };
ListCell *Head(void) const;

int fNum;
ListCell *fHead;
ListCell *fTail;

};

class ListIterator {
public:

ListIterator(List *l);
void First(void);
void Next(void);
int IsDone(void);
void *CurrentItem(void);

private:
List::ListCell *fPos;
List *fList;

};

inline int List::Length(void) const { return fNum; }
inline List::ListCell *List::Head() const { return fHead; }

inline ListIterator::ListIterator(List *l)
{ fList = l; fPos = fList->Head(); }

inline void ListIterator::First(void) { fPos = fList->Head(); }
inline void ListIterator::Next(void)

{ if(fPos != NULL) fPos = fPos->fNext; }
inline int ListIterator::IsDone(void) { return (fPos == NULL);
}
inline void *ListIterator::CurrentItem(void)

{ if(fPos == NULL) return NULL; else return fPos->fData; }
#endif

There are several points to note in this header file. Class List nominates class
ListIterator as a friend; this means that in the code of class ListIterator, there can
be statements involving access to private data and functions of class List.

Here, an extra function is defined – List::Head(). This function is private and
therefore only useable in class List and its friends (this prevents clients from getting at
the head pointer to the chain of listcells). Although, as a friend, a ListIterator can
directly access the fHead data member, it is still preferable that it use a function style
interface. You don't really want friends becoming too intimate for that makes it
difficult to locate problems if something goes wrong.

The class declaration for ListIterator is straightforward except for the type of its
fPos pointer. This is a pointer to a ListCell. But the struct ListCell is defined
within class List. If, as here, you want to refer to this data type in code outside of that of
class List, you must give its full type name. This is a ListCell as defined by class
List. Hence, the correct type name is List::ListCell.

Special access
function only used by

friends

Declare the iterator
class

Implementation of
ListIterator

Friend nomination

Access function
List::Head()

Declaration of
ListIterator class

ListIterator 797

Implementation of
ListIterator

The member functions for class ListIterator are all simple. The constructor
keeps a pointer to the List that it is to work with, and initializes the fPos pointer to the
first listcell in the list. Member function First() resets the pointer (useful if you want
the iterator to run through the list more than once); Next() advances the pointer;
CurrentItem() returns the data pointer from the current listcell; and IsDone() checks
whether the fPos pointer has advanced off the end of the list and become NULL. (The
code for Next() checks to avoid falling over at the end of a list by being told to take
the "next" of a NULL pointer. This could only occur if the client program was in error.
You might choose to "throw an exception", see Chapter 26, rather than make it a "soft
error".)

The test program used to exercise class List and class DynamicArray can be
extended to check the implementation of class ListIterator:. It needs a new branch
in its switch() statement, one that allows the tester to request that a ListIterator
"walk" along the List:

case 'w':
{
ListIterator li(&c1);
li.First();
cout << "Current collection " << endl;
while(!li.IsDone()) {

Book p = (Book) li.CurrentItem();
cout << p << endl;
li.Next();
}

}
break;

The statement:

ListIterator li(&c1);

creates a ListIterator, called li, giving it the address of the List, cl, that it is to
work with (the ListIterator constructor specifies a pointer to List, hence the need
for an & address of operator).

The statement, li.First(), is redundant because the constructor has already
performed an equivalent initialization. It is there simply because that is the normal
pattern for walking through a collection:

li.First();
while(!li.IsDone()) {

… li.CurrentItem();
…
li.Next();
}

798 Intermediate class

Note the need for the typecast:

Book p = (Book) li.CurrentItem();

In the example program, Book is a pointer type (actually just a char*). The Current-
Item() function returns a void*. The programmer knows that the only things that will
be in the cl list are Book pointers; so the type cast is safe. It is also necessary because
of course you can't really do anything with a void* and here the code needs to process
the books in the collection.

Class List is singly linked, it only has "next" pointers in its listcells. This means
that it is only practical to "walk forwards" along the list from the head to the tail. If the
list class uses listcells with both "next" and "previous" pointers, it is practical to walk
the list in either direction. Iterators for doubly linked lists usually take an extra
parameter in their constructor; this is a "flag" that indicates whether the iterator is a
"forwards iterator" (start at the head and follow the next links) or a "backwards iterator"
(start at the tail and follow the previous links).

Backwards and
forwards iterators in

two way lists

23.3.2 TreeIterator

Like doubly linked lists that can have forwards or backwards iterators, binary trees can
have different kinds of iterator. An "in order" iterator process the left subtree, handles
the data at a treenode, then processes the right subtree; a "pre order" iterator processes
the data at a tree node before examining the left and right subtrees. However, if the
binary tree is a search tree, only "in order" traversal is useful. An in order style of
traversal means that the iterator will return the stored items in increasing order by key.

An iterator that can "walk" a binary tree is a little more elaborate than that needed
for a list. It is easy to descend the links from the root to the leaves of a tree, but there
aren't any "back pointers" that you could use to find your way back from a leaf to the
root. Consequently, a TreeIterator can't manage simply with a pointer to the current
TreeNode, it must also maintain some record of information describing how it reached
that TreeNode.

As illustrated in Figure 23.1, the iterator uses a kind of "stack" of pointers to
TreeNodes. In response to a First() request, it chases down the left vine from the
root to the left most leaf; so, in the example shown in Figure 23.1 it stacks up pointers
to the TreeNodes associated with keys 19, 12, 6.

A CurrentItem() request should return the data item associated with the entry at
the top of this stack.

A Next() request has to replace the topmost element by its successor (which might
actually already be present in the stack). As illustrated in Figure 23.1, the Next()
request applied when the iterator has entries for 19, 12, and 6, should remove the 6 and
add entries for 9 and 7.

Stack of pointers
maintain state of

traversal

TreeIterator 799

19

9

12

6

28

3326

7

19
12

6

19
12

9
7

19
12

9

19
12

19 28
26

28 33

Example Tree:

TreeIterator's "stack"

First()

Next() Next() Next() Next() Next() Next() Next()

Current-
Item()

6 7 9 12 19 26 28 33

Figure 23.1 Tree and tree iterator.

A subsequent Next() request removes the 7, leaving 19, 12, and 9 on the stack.
Further Next() requests remove entries until the 19 is removed, it has to be replaced
with its successor so then the stack is filled up again with entries for 28 and 26.

The programmer implementing class TreeIterator has to chose how to represent
this stack. If you wanted to be really robust, you would use a DynamicArray of
TreeNode pointers, this could grow to whatever size was needed. For most practical
purposes a fixed size array of pointers will suffice, for instance an array with one
hundred elements. The size you need is determined by the maximum depth of the tree
and thus depends indirectly on the number of elements stored in the tree. If the tree
were balanced, a depth of one hundred would mean that the tree had quite a large
number of nodes (something like 299). Most trees are poorly balanced. For example if
you inserted 100 data items into a tree in decreasing order of their keys, the left branch
would be one hundred deep. Although a fixed array will do, the code needs to check for
the array becoming full.

Representing the
stack

800 Intermediate class

Class BinaryTree has to nominate class TreeIterator as a "friend", and again for
style its best to provide a private access function rather than have this friend rummage
around in the data:

class BinaryTree
{
public:

BinaryTree();
…
friend class TreeIterator;

private:
TreeNode *Root(void);
…

};

inline TreeNode *BinaryTree::Root(void) { return fRoot; }

Class TreeIterator has the standard public interface for an iterator; its private data
consist of a pointer to the BinaryTree it works with, an integer defining the depth of
the "stack", and the array of pointers:

class TreeIterator {
public:

TreeIterator(BinaryTree *tree);
void First(void);
void Next(void);
int IsDone(void);
void *CurrentItem(void);

private:
int fDepth;
TreeNode *fStack[kITMAXDEPTH];
BinaryTree *fTree;

};

The constructor simply initializes the pointer to the tree and the depth counter. This
initial value corresponds to the terminated state, as tested by the IsDone() function.
For this iterator, a call to First() must be made before use.

TreeIterator::TreeIterator(BinaryTree *tree)
{

fTree = tree;
fDepth = -1;

}

int TreeIterator::IsDone(void)
{

return (fDepth < 0);
}

TreeIterator 801

Function First() starts at the root and chases left links for as far as it is possible to
go; each TreeNode visited during this process gets stacked up. This process gets things
set up so that the data item with the smallest key will be the one that gets fetched first.

void TreeIterator::First(void)
{

fDepth = -1;
TreeNode *ptr = fTree->Root();
while(ptr != NULL) {

fDepth++;
fStack[fDepth] = ptr;
ptr = ptr->LeftLink();
}

}

Data items are obtained from the iterator using CurrentItem(). This function just
returns the data pointer from the TreeNode at the top of the stack:

void *TreeIterator::CurrentItem(void)
{

if(fDepth < 0) return NULL;
else
 return fStack[fDepth]->Data();

}

The Next() function has to "pop" the top element (i.e. remove it from the stack)
and replace it by its successor. Finding the successor involves going down the right
link, and then chasing left links as far as possible. Again, each TreeNode visited during
this process gets "pushed" onto the stack. (If there is no right link, the effect of Next()
is merely to pop an element from the stack.)

void TreeIterator::Next(void)
{

if(fDepth < 0) return;

TreeNode *ptr = fStack[fDepth];
fDepth--;
ptr = ptr->RightLink();
while(ptr != NULL) {

fDepth++;
fStack[fDepth] = ptr;
ptr = ptr->LeftLink();
}

}

Use of the iterator should be tested. An additional command can be added to the test
program shown previously:

802 Intermediate class

case 'w':
{
TreeIterator ti(&gTree);
ti.First();
cout << "Current tree " << endl;
while(!ti.IsDone()) {

DataItem *d = (DataItem*) ti.CurrentItem();
d->PrintOn(cout);
ti.Next();
}

}
break;

23.4 OPERATOR FUNCTIONS

Those Add(), Subtract(), and Multiply() functions in class Number (Chapter 19)
seem a little unaesthetic. It would be nicer if you could write code like the following:

Number a("97417627567654326573654365865234542363874266");
Number b("65765463658764538654137245665");
Number c;
c = a + b;

The operations '+', '-', '/' and '*' have their familiar meanings and c = a + b does read
better than c = a.Add(b). Of course, if you are going to define '+', maybe you should
define ++, +=, --, -=, etc. If you do start defining operator functions you may have
quite a lot of functions to write.

Operator functions are overrated. There aren't that many situations where the
operators have intuitive meanings. For example you might have some "string" class
that packages C-style character strings (arrays each with a '\0' terminating character as
its last element) and provides operations like Concatenate (append):

String a("Hello");
String b(" World");

c = a.Concatenate(b); // or maybe? c = a + b;

You could define a '+' operator to work for your string class and have it do the
concatenate operation. It might be obvious to you that + means "append strings", but
other people won't necessarily think that way and they will find your c = a + b more
difficult to understand than c = a.Concatenate(b).

When you get to use the graphics classes defined in association with your IDE's
framework class library, you will find that they often have some operator functions
defined. Thus class Point may have an operator+ function (this will do something

Operator functions 803

like vector addition). Or, you might have class Rectangle where there is an
"operator+(const Point&)" function; this curious thing will do something like move
the rectangle's topleft corner by the x, y amount specified by the Point argument (most
people find it easier if the class has a Rectangle::MoveTopLeftCorner() member
function).

Generally, you should not define operator functions for your classes. You can make
exceptions for some. Class Number is an obvious candidate. You might be able to
pretty up class Bitmap by giving it "And" and "Or" functions that are defined in terms
of operators.

Apart from a few special classes where you may wish to define several operator
functions, there are a couple of operators whose meanings you have to redefine in many
classes.

23.4.1 Defining operator functions

As far as a compiler is concerned, the meaning of an operator like '+' is defined by
information held in an internal table. This table will specify the code that has to be
generated for that operator. The table will have entries like:

operator context translation
long + long load integer register with first data item

add second data item to contents of register

double + double load floating point register with first data item
add second data item to contents of register

The translation may specify a sequence of instructions like those shown. But some
machines don't have hardware for all arithmetic operations. There are for example
RISC computers that don't have "floating point add" and "floating point multiply";
some don't even have "integer divide". The translations for these operators will specify
the use of a function:

operator context translation
long / long push dividend and divisor onto stack

call ".div" function

In most languages, the compiler's translation tables are fixed. C++ allows you to add
extra entries. So, if you have some "add" code for a class Point that you've defined and
you want this called for Point + Point, you can specify this to the compiler. It takes
details from your specification and appends these to its translation tables:

operator context translation
point + point push the two points onto the stack

call the function defined by the programmer

804 Intermediate class

The specifications that must appear in your classes are somewhat unpronounceable.
An addition operator would be defined as the function:

operator+()

(say that as "operator plus function"). For example, you could have:

class Point {
public:

Point();
…
Point operator+(const Point& other) const;
…

private:
int fh, fv;

};

with the definition:

Point Point::operator+(const Point& other) const
{

Point vecSum;
vecSum.fh = this->fh + other.fh;
vecSum.fv = this->fv + other.fv;
return vecSum;

}

This example assumes that the + operation shouldn't change either of the Points that it
works on but should create a temporary Point result (in the return part of a function
stackframe) that can be used in an assignment; this makes it like + for integers and
doubles.

It is up to you to define the meaning of operator functions. Multiplying points by
points isn't very meaningful, but multiplying points by integers is equivalent to scaling.
So you could have the following where there is a multiply function that changes the
Point object that executes it:

class Point {
public:

Point();
…
Point operator+(const Point& other) const;
Point& operator*(int scalefactor);
…

private:
int fh, fv;

};

Defining operator functions 805

with a definition:

Point& Point::operator*(int scalefactor)
{

// returning a reference allows expressions that have
// scaling operations embedded inside them.
fh *= scalefactor;
fv *= scalefactor;
return *this;

}

with these definitions you can puzzle anyone who has to read and maintain your code
by having constructs like:

Point a(6,4);

…;
a*3;

Point b(7, 2);
Point c;
…
c = b + a*4;

Sensible maintenance programmers will eventually get round to changing your code
to:

class Point {
public:

Point();
…
Point operator+(const Point& other) const;
void ScaleBy(int scalefactor);
…

};

void Point::ScaleBy(int scalefactor)
{

fh *= scalefactor;
fv *= scalefactor;

}

resulting in more intelligible programs:

Point a(6,4);

…;
a.ScaleBy(3);

806 Intermediate class

Point b(7, 2);
Point c;
…
a.ScaleBy(4);
c = b + a;

Avoid the use of operator functions except where their meanings are universally
agreed. If their meanings are obvious, operator function can result in cosmetic
improvements to the code; for example, you can pretty up class Number as follows:

class Number {
public:

// Member functions declared as before
…
Number operator+(const Number& other) const;
…
Number operator/(const Number& other) const;

private:
// as before
…

};

inline Number Number::operator+(const Number& other) const
{

return this->Add(other);
}

Usually, the meanings of operator functions are not obvious

23.4.2 Operator functions and the iostream library

You will frequently want to extend the meanings of the << and >> operators. A C++
compiler's built in definition for these operators is quite limited:

operator context translation
long << long load integer register with first data item

shift left by the specified number of places

long >> long load integer register with first data item
shift right by the specified number of places

But if you #include the iostream header files, you add all the "takes from" and "gives
to" operators:

operator context translation
ostream << long push the ostream id and the long onto the stack

call the function "ostream::operator<<(long)"

Takes from and gives to operators 807

istream >> long push the istream id and the address of the long
onto the stack

call the function "istream::operator>>(long&)"

These entries are added to the table as the compiler reads the iostream header file with
its declarations like:

class ostream {
public:

…
ostream& operator<<(long);
ostream& operator<<(char*);
…

};

Such functions declared in the iostream.h header file are member functions of class
istream or class ostream. An ostream object "knows" how to print out a long integer,
a character, a double, a character string and so forth.

How could you make an ostream object know how to print a Point or some other
programmer defined class?

Typically, you will already have defined a PrintOn() member function in your
Point class.

class Point {
public:

…
void PrintOn(ostream& out);

private:
int fh, fv;

};

void Point::PrintOn(ostream& out)
{

out << "(" << fh << ", " << fv << ") ";
}

and all you really want to do is make it possible to write something like:

Point p1, p2;
…
cout << "Start point " << p1 << ", end point " << p2 << endl;

rather than:

cout << "Start point ";
p1.PrintOn(cout);
cout << ", end point ";

808 Intermediate class

p2.PrintOn(cout);
cout << endl;

You want someway of telling the compiler that if it sees the << operator involving an
ostream and a Point then it is to use code similar to that of the Point::PrintOn()
function (or maybe just use a call to the existing PrintOn() function).

You could change the classes defined in the iostream library. You could add extra
member functions:

class ostream {
// everything as now plus

ostream& operator<<(const Point& p);
…

};

and provide your definition of ostream& ostream::operator<<(const Point&).
It should be obvious that this is not desirable. The iostream library has been

carefully developed and debugged. You wouldn't want hundreds of copies each with
minor extensions hacked in.

Fortunately, such changes aren't necessary. There is another way of achieving the
desired effect.

You can define global operator functions. These functions aren't members of
classes. They are simply devices for telling the compiler how it is to translate cases
where it finds an operator involving arguments of specified types.

In this case, you need to define a new meaning for the << operator when it must
combine an ostream and a Point. So you define:

?? operator<<(ostream& os, const Point& p)
{

p.PrintOn(os);
return ??

}

(the appropriate return type will be explained shortly). The compiler invents a name for
the function (it will be something complex like __leftshift_Tostreamref_
cTPointref) and adds the new meaning for << to its table:

operator context translation
ostream << point push the ostream id and the point's address onto

the stack
call the function __leftshift_Tostreamref_

cTPointref

This definition then allows constructs like: Point p; …; cout << p;.
Of course, the ideal is for the stream output operations to be concatenated as in:

A global
operator<<(ostream&

, Point&) function

Takes from and gives to operators 809

cout << "Start point " << p1 << ", end point " << p2 << endl;

This requirement defines the return type of the function. It must return a reference to
the ostream:

ostream& operator<<(ostream& os, const Point& p)
{

p.PrintOn(os);
return os;

}

Having a reference to the stream returned as a result permits the concatenation. Figure
23.2 illustrates the way that the scheme works.

cout << "Start point " << p1 << ", end point " << p2 << endl;

calls
ostream::operator<<(char*),
returning ostream&, i.e. cout

cout << p1
calls global
operator<<(ostream&, const Point),
returning ostream&, i.e. cout

Figure 23.2 Illustration of groupings involved in concatenated use of ostream&
operator<<() functions.

You might also want:

ostream& operator<<(ostream& os, Point *p_pt)
{

p_pt->PrintOn(os);
return os;

}

23.5 RESOURCE MANAGER CLASSES AND
DESTRUCTORS

This section explains some of the problems associated with "resource manager" classes.
Resource manager classes are those whose instances own other data structures.

Usually, these will be other data structures separately allocated in the heap. We've
already seen examples like class DynamicArray whose instances each own a separately
allocated array structure. However, sometimes the separately allocated data structures

810 Intermediate class

may be in operating system's area; examples here are resources like open files, or "ports
and sockets" as used for communications between programs running on different
computers.

The problems for resource managers are:

• disposal of managed resources that are no longer required;

• unintended sharing of resources.

The first subsection, 23.5.1, provides some examples illustrating these problems. The
following two sections present solutions.

23.5.1 Resource management

Instances of classes can acquire resources when they are created, or as a result of
subsequent actions. For example, an object might require a variable length character
string for a name:

class DataItem {
public:

DataItem(const char* dname);
…

private:
char *fName;
…

};

DataItem::DataItem(const char* dname)
{

fName = new char[strlen(dname) + 1];
strcpy(fName, dname);
…

}

Another object might need to use a file:

class SessionLogger {
public:

SessionLogger();
…
int OpenLogFile(const char* logname);
…

private:
…
ofstream fLfile;
…

};

Resource management 811

int SessionLogger::OpenLogFile(const char* logname)
{

fLfile.open(logname, ios::out);
return fLfile.good();

}

Instances of the DataItem and SessionLogger classes will be created and destroyed
in various ways:

void DemoFunction()
{

while(AnotherSession()) {
char name[100];
cout << "Session name: "; cin >> name;
SessionLogger s1;
if(0 == s1.OpenLogFile(name)) {

cout << "Can't continue, no file.";
break;
}

for(;;) {
char dbuff[100];
…
DataItem *dptr = new DataItem(dbuff);
…
delete dptr;
}

}
}

In the example code, a SessionLogger object is, in effect, created in the stack and
subsequently destroyed for each iteration of the while loop. In the enclosed for loop,
DataItem objects are created in the heap, and later explicitly deleted.

Figure 23.3 illustrates the representation of a DataItem (and its associated name) in
the heap, and the effect of the statement delete dptr. As shown, the space occupied
by the primary DataItem structure itself is released; but the space occupied by its name
string remains "in use". Class DataItem has a "memory leak".

Figure 23.4 illustrates another problem with class DataItem , this problem is sharing
due to assignment. The problem would show up in code like the following (assume for
this example that class DataItem has member functions that change the case of all
letters in the associated name string):

DataItem d1("This One");
DataItem d2("another one");
…
d2 = d1;

812 Intermediate class

In use

In use

D E M O
1

fName

Heap after

FREE

In use

D E M O
1

fName

dptr = new DataItem(DEMO1)

Heap after
delete dptr

dptr

heap structure
containing a DataItem

heap structure
containing a string

Figure 23.3 Resource manager class with memory leak.

…
d1.MakeLowerCase();
d2.MakeUpperCase();
d1.PrintOn(cout);
…

The assignment d2 = d1 will work by default. The contents of record structure d1
are copied field by field into d2, so naturally d2's fName pointer is changed to point to
the same string as that referenced by d1.fName. (There is also another memory leak;
the string that used to be owned by d2 has now been abandoned.)

Since d2 and d1 both share the same string, any operations that they perform on that
string will interact. Although object d1 has made its string lower case, d2 changes it to
upper case so that when printed by d1 it appears as upper case.

Class SessionLogger has very similar problems. The resource that a
SessionLogger object owns is some operating system structure describing a file. Such
structures, lets just call them "file descriptors," get released when files are closed. If a
SessionLogger object is destroyed before it closes its associated file, the file descriptor
structures remain. When a program finishes, all files are closed and the associated file
descriptor structures are released.

Resource management 813

In use

T h i s
 o n efName

fName In use

a n o t
h e r
o n e

HeapStack

d1

d2

In use

T h i s
 o n efName

fName In use

a n o t
h e r
o n e

HeapStack

d1

d2

Initial state after assignment
d2 = d1

Figure 23.4 Assignment leading to sharing of resources.

However, an operating system normally limits the number of file descriptors that a
program can own. If SessionLogger objects don't close their files, then eventually the
program will run out of file descriptors (its a bit like running out of heap space, but you
can make it happen a lot more easily).

Structure sharing will also occur if a program's code has assignment statements
involving SessionLoggers:

SessionLogger s1, s2;
…
s1.OpenLogFile("testing");
…
s2 = s1;

Both SessionLogger objects use the same file. So if one does something like cause a
seek operation (explicitly repositioning the point where the next write operation should
occur), this will affect the other SessionLogger.

814 Intermediate class

23.5.2 Destructor functions

Some of the problems just explained can be solved by arranging that objects get the
chance to "tidy up" just before they themselves get destroyed. You could attempt to
achieve this by hand coding. You would define a "TidyUp" function in each class:

void DataItem::TidyUp() { delete [] fName; }

void SessionLogger::TidyUp() { fLfile.close(); }

You would have to include explicit calls to these TidyUp() functions at all appropriate
points in your code:

while(AnotherSession()) {
…
SessionLogger s1;
…
for(;;) {

…
DataItem *dptr = new DataItem(dbuff);
…
dptr->TidyUp();
delete dptr;
}

s1.TidyUp();
}

That is the problem with "hand coding". It is very easy to miss some point where an
automatic goes out of scope and so forget to include a tidy up routine. Insertion of
these calls is also tiresome, repetitious "mechanical" work.

Tiresome, repetitious "mechanical" work is best done by computer program. The
compiler program can take on the job of putting in calls to "TidyUp" functions. Of
course, if the compiler is to do the work, things like names of functions have to be
standardized.

For each class you can define a "destructor" routine that does this kind of tidying up.
In order to standardize for the compiler, the name of the destructor routine is based on
the class name. For class X, you had constructor functions, e.g. X(), that create
instances, and you can have a destructor function ~X() that does a tidy up before an
object is destroyed. (The character ~, "tilde", is the symbol used for NOT operations on
bit maps and so forth; a destructor is the NOT, or negation, of a constructor.)

Rather than those "TidyUp" functions, class DataItem and class SessionLogger
would both define destructors:

class DataItem {
public:

DataItem(const char *name);

Destructors 815

~DataItem();
…

};

DataItem::~DataItem() { delete [] fName; }

class SessionLogger {
public:

SessionLogger();
~SessionLogger() { this->fLfile.close(); }
…

};

Just as the compiler put in the implicit calls to constructor functions, so it puts in the
calls to destructors.

You can have a class with several constructors because there may be different kinds
of data that can be used to initialize a class. There can only be one destructor; it takes
no arguments. Like constructors, a destructor has no return type.

Destructors can exacerbate problems related to structure sharing. As we now have a
destructor for class DataItem, an individual DataItem object will dutifully delete its
name when it gets destroyed. If assignment has lead to structure sharing, there will be a
second DataItem around whose name has suddenly ceased to exist.

You don't have to define destructors for all your classes. Destructors are needed for
classes that are themselves resource managers, or classes that are used as "base classes"
in some class hierarchy (see section 23.6).

Several of the collection classes in Chapter 21 were resource managers and they
should have had destructors.

Class DynamicArray would be easy, it owns only a single separately allocated array,
so all that its destructor need do is get rid of this:

class DynamicArray {
public:

DynamicArray(int size = 10, int inc = 5);
~DynamicArray();

…

private:
…
void **fItems;

};

DynamicArray::~DynamicArray() { delete [] fItems; }

Note that the destructor does not delete the data items stored in the array. This is a
design decision for all these collection classes. The collection does not own the stored
items, it merely looks after them for a while. There could be other pointers to stored

816 Intermediate class

items elsewhere in the program. You can have collection classes that do own the items
that are stored or that make copies of the original data and store these copies. In such
cases, the destructor for the collection class should run through the collection deleting
each individual stored item.

Destructors for class List and class BinaryTree are a bit more complex because
instances of these classes "own" many listcells and treenodes respectively. All these
auxiliary structures have to be deleted (though, as already explained, the actual stored
data items are not to be deleted). The destructor for these collection class will have to
run through the entire linked network getting rid of the individual listcells or treenodes.

A destructor for class List is as follows:

List::~List()
{

ListCell *ptr;
ListCell *temp;
ptr = fHead;
while(ptr != NULL) {

temp = ptr;
ptr = ptr->fNext;
delete temp;
}

}

The destructor for class BinaryTree is most easily implemented using a private
auxiliary recursive function:

BinaryTree::~BinaryTree()
{

Destroy(fRoot);
}

void BinaryTree::Destroy(TreeNode* t)
{

if(t == NULL)
return;

Destroy(t->LeftLink());
Destroy(t->RightLink());
delete t;

}

The recursive Destroy() function chases down branches of the tree structure. At each
TreeNode reached, Destroy() arranges to get rid of all the TreeNodes in the left
subtree, then all the TreeNodes in the right subtree, finally disposing of the current
TreeNode. (This is an example of a "post order" traversal; it processes the current node
of the tree after, "post", processing both subtrees.)

Assignment operator 817

23.5.3 The assignment operator and copy constructors

There are two places where structures or class instances are, by default, copied using a
byte by byte copy. These are assignments:

DataItem d1("x"), d2("y");
…
d2 = d1;
…

and in calls to functions where objects are passed by value:

void foo(DataItem dd) { … ; … ; … }

void test()
{

DataItem anItem("Hello world");
…
foo(anItem);
…

}

This second case is an example of using a "copy constructor". Copy constructors are
used to build a new class instance, just like an existing class instance. They do turn up
in other places, but the most frequent place is in situations like the call to the function
requiring a value argument.

As illustrated in section 23.5.1, the trouble with the default "copy the bytes"
implementations for the assignment operator and for a copy constructor is that they
usually lead to undesired structure sharing.

If you want to avoid structure sharing, you have to provide the compiler with
specifications for alternative ways of handling assignment and copy construction. Thus,
for DataItem, we would need a copy constructor that made a copy of the character
string fName:

DataItem::DataItem(const DataItem& other)
{

fName = new char[strlen(other.fName) + 1];
strcpy(fName, other.fName);
…

}

Though similar, assignments are a little more complex. The basic form of an
operator= function for the example class DataItem would be:

?? DataItem::operator=(const DataItem& other)
{

…

A copy constructor
that duplicates an
"owned resource"

Assignment operator

818 Intermediate class

delete [] fName;
fName = new char[strlen(other.fName) + 1];
strcpy(fName, other.fName);
…

}

The statement:

delete [] fName;

gets rid of the existing character array owned by the DataItem; this plugs the memory
leak that would otherwise occur. The next two statements duplicate the content of the
other DataItem's fName character array.

If you want to allow assignments at all, then for consistency with the rest of C++
you had better allow concatenated assignments:

DataItem d1("XXX");
DataItem d2("YYY");
DataItem d3("ZZZ";
…
d3 = d2 = d1;

To achieve this, you have to have the DataItem::operator=() function to return a
reference to the DataItem itself:

DataItem& DataItem::operator=(const DataItem& other)
{

…
delete [] fName;
fName = new char[strlen(other.fName) + 1];
strcpy(fName, other.fName);
…
return *this;

}

There is a small problem. Essentially, the code says "get rid of the owned array,
duplicate the other's owned array". Suppose somehow you tried to assign the value of
a DataItem to itself; the array that has then to be duplicated is the one just deleted.
Such code will usually work, but only because the deleted array remains as a "ghost" in
the heap. Sooner or later the code would crash; the memory manager will have
rearranged memory in some way in response to the delete operation.

You might guess that "self assignments" are rare. Certainly, those like:

DataItem d1("xyz");
…
d1 = d1;

Plugging a memory
leak

Assignment operator 819

are rare (and good compilers will eliminate statements like d1 = d1). However, self
assignments do occur when you are working with data referenced by pointers. For
example, you might have:

DataItem *d_ptr1;
DataItem *d_ptr2;
…
// Copy DataItem referenced by d_ptr1 into the DataItem
// referenced by pointer d_ptr2
*dptr2 = *dptr1;

It is of course possible that dptr1 and dptr2 are pointing to the same DataItem.
You have to take precautions to avoid problems with self assignments. The

following arrangement (usually) works:

DataItem& DataItem::operator=(const DataItem& other)
{

if(this != &other) {
delete [] fName;
fName = new char[strlen(other.fName) + 1];
strcpy(fName, other.fName);
}

return *this;
}

It checks the addresses of the two DataItems. One address is held in the (implicit)
pointer argument this, the second address is obtained by applying the & address of
operator to other. If the addresses are equal it is a self assignment so don't do
anything.

Of course, sometimes it is just meaningless to allow assignment and copy
constructors. You really wouldn't want two SessionLoggers working with the same
file (and they can't really have two files because their files have to have the same
name). In situations like this, what you really want to do is to prevent assignments and
other copying. You can achieve this by declaring a private copy constructor and a
private operator= function;

class SessionLogger {
public:

SessionLogger();
~SessionLogger();
…

private:
// No assignment, no copying!
void operator=(const SessionLogger& other);
SessionLogger(const SessionLogger& other);
…

};

Preventing copying

820 Intermediate class

You shouldn't provide an implementation for these functions. Declaring these functions
as private means that such functions can't occur in client code. Code like
SessionLogger s1, s2; …; s2 = s1; will result in an error message like "Cannot
access SessionLogger::_assign() here". Obviously, such operations won't occur in
the member functions of the class itself because the author of the class knows that
assignment and copying are illegal. The return type of the operator= function does
not matter in this context, so it is simplest to declare it as void.

Assignment and copy construction should be disabled for collection classes like
those from Chapter 24, e.g.:

class BinaryTree {
public:

…
private:

void operator=(const BinaryTree& other);
BinaryTree(const BinaryTree& other);
…

};

23.6 INHERITANCE

Most of the programs that you will write in future will be "object based". You will
analyze a problem, identify "objects" that will be present at run-time in your program,
and determine the "classes" to which these objects belong. Then you will design the
various independent classes needed, implement them, and write a program that creates
instances of these classes and allows them to interact.

Independent classes? That isn't always the case.
In some circumstances, in the analysis phase or in the early stages of the design

phase you will identify similarities among the prototype classes that you have proposed
for your program. Often, exploitation of such similarities leads to an improved design,
and sometimes can lead to significant savings in implementation effort.

23.6.1 Discovering similarities among prototype classes

Suppose that you and some colleagues had to write a "Macintosh/Windows" program
for manipulating electrical circuits, the simple kinds of circuit that can be made with
those "Physics is Fun" sets that ambitious parents buy to disappoint their kids at Xmas.
Those kits have wires, switches, batteries, lamp-bulbs and resistors, and sometimes
more. A program to simulate such circuits would need an editing component that
allowed a circuit to be laid out graphically, and some other part that did all the "Ohm's
Law" and "Kirchoff's Law" calculations to calculate currents and "light up" the
simulated bulbs.

Example application

Discovering similarities 821

You have used "Draw" programs so you know the kind of interface that such a
program would have. There would be a "palette of tools" that a user could use to add
components. The components would include text (paragraphs describing the circuit),
and circuit elements like the batteries and light bulbs. The editor part would allow the
user to select a component, move it onto the main work area and then, by doubly
clicking the mouse button, open a dialog window that would allow editing of text and
setting parameters such as a resistance in ohms. Obviously, the program would have to
let the user save a partially designed circuit to a file from where it could be restored
later.

What objects might the program contain?
The objects are all pretty obvious (at least they are obvious once you've been playing

this game long enough). The following are among the more important:

• A "document" object that would own all the data, keep track of the components
added and organize transfers to and from disk.

• Various collections, either "lists" or "dynamic arrays" used to store items. Lets call
them "lists" (although, for efficiency reasons, a real implementation would
probably use dynamic arrays). These lists would be owned by the "document".
There might be a list of "text paragraphs" (text describing the circuit), a "list of
wires", a "list of resistors" and so forth.

• A "palette object". This would respond to mouse-button clicks by giving the
document another battery, wire, resistor or whatever to add to the appropriate list.

• A "window" or "view" object used when displaying the circuit.
• Some "dialog" objects" used for input of parameters.
• Lots of "wire" objects.
• Several "resistor objects".
• A few "switch" objects".
• A few "lamp bulb" objects".
and for a circuit that actually does something
• At least one battery object.

For each, you would need to characterize the class and work out a list of data owned
and functions performed.

During a preliminary design process your group would be right to come up with
classes Battery, Document, Palette, Resistor, Switch. Each group member could work
on refining one or two classes leading to an initial set of descriptions like the following:

• class TextParagraph
Owns:

a block of text and a rectangle defining position in main view (window).
Does:

GetText() – uses a standard text editing dialog to get text changed;
FollowMouse() – responds to middle mouse button by following mouse
to reposition within view;
DisplayText() - draws itself in view;

Objects needed

Preliminary design
ideas for classes

822 Intermediate class

Rect() – returns bounding rectangle;
…
Save() and Restore() - transfers text and position details to/.from file.

• class Battery
Owns:

Position in view, resistance (internal resistance), electromotive force,
possibly a text string for some label/name, unique identifier, identifiers
of connecting wires…

Does:
GetVoltStuff() – uses a dialog to get voltage, internal resistance etc.
TrackMouse() – respond to middle mouse button by following mouse to
reposition within view;
DrawBat() - draws itself in view;
AddWire() – add a connecting wire;
Area() – returns rectangle occupied by battery in display view;
…
Put() and Get() – transfers parameters to/from file.

• class Resistor
Owns:

Position in view, resistance, possibly a text string for some label/name,
unique identifier, identifiers of connecting wires…

Does:
GetResistance() – uses a dialog to get resistance, label etc.
Move() – respond to middle mouse button by following mouse to
reposition within view;
Display() - draws itself in view;
Place() – returns area when resistor gets drawn;
…
ReadFrom() and WriteTo() – transfers parameters to/from file.

You should be able to sketch out pseudo code for some of the main operations. For
example, the document's function to save data to a file might be something like the
following:

Document::DoSave
write paragraphList.Length()
iterator i1(paragraphList)
for i1.First(), !i1.IsDone() do

paragraph_ptr = i1.CurrentItem();
paragraph_ptr->Save()
i1.Next();

write BatteriesList.Length()
iterator i2(BatteriesList)
for i2.First, !i2.IsDone() do

battery_ptr = i2.CurrentItem()

Prototype code using
instances of classes

Discovering similarities 823

battery_ptr->Put()

…

The function to display all the data of the document would be rather similar:

Document::Draw
iterator i1(paragraphList)
for i1.First(), !i1.IsDone() do

paragraph_ptr = i1.CurrentItem();
paragraph_ptr->DisplayText()
i1.Next();

iterator i2(BatteriesList)
for i2.First, !i2.IsDone() do

battery_ptr = i2.CurrentItem()
battery_ptr->DrawBat()

…

Another function of "Document" would sort out which data element was being picked
when the user wanted to move something using the mouse pointer:

Document::LetUserMoveSomething(Point mousePoint)
iterator i1(paragraphList)
Paragraph *pp = NULL;
for i1.First(), !i1.IsDone() do

paragraph_ptr = i1.CurrentItem();
Rectangle r = paragraph_ptr->Rect()
if(r.Contains(mousePoint) pp = paragraph_ptr;
i1.Next();

if(pp != NULL)
pp->FollowMouse()
return

iterator i2(BatteriesList)
battery *pb
for i2.First, !i2.IsDone() do

battery_ptr = i2.CurrentItem()
Rectangle r = battery_ptr ->Area()
if(r.Contains(mousePoint) pb = battery_ptr ;
i2.Next();

if(pb != NULL)
pb->TrackMouse()
return

…

824 Intermediate class

Design problems? By now you should have the feeling that there is something amiss. The design with
its "batteries", "wires", "text paragraphs" seems sensible. But the code is coming out
curiously clumsy and unattractive in its inconsistencies.

Batteries, switches, wires, and text paragraphs may be wildly different kinds of
things, but from the perspective of "document" they actually have some similarities.
They are all "things" that perform similar tasks. A document can ask a "thing" to:

• Save yourself to disk;
• Display your editing dialog;
• Draw yourself;
• Track the mouse as it moves and reposition yourself;
…

Some "things" are more similar than others. Batteries, switches, and resistors will
all have specific roles to play in the circuit simulation, and there will be many
similarities in their roles. Wires are also considered in the circuit simulation, but their
role is quite different, they just connect active components. Text paragraphs don't get
involved in the circuit simulation part. So all of them are "storable, drawable, editable"
things, some are "circuit things", and some are "circuit things that have resistances".

You can represent such relationships among classes graphically, as illustrated in
Figure 23.5. As shown there, there is a kind of hierarchy.

Class Thing captures just the concept of some kind of data element that can draw
itself, save itself to file and so forth. There are no data elements defined for Thing, it is
purely conceptual, purely abstract.

A TextParagraph is a particular kind of Thing. A TextParagraph does own data, it
owns its text, its position and so forth. You can also define actual code specifying
exactly how a TextParagraph might carry out specific tasks like saving itself to file.
Whereas class Thing is purely conceptual, a TextParagraph is something pretty real,
pretty "concrete". You can "see" a TextParagraph as an actual data structure in a
running program.

In contrast, a CircuitThing is somewhat abstract. You can define some properties of
a CircuitThing. All circuit elements seem to need unique identifiers, they need
coordinate data defining their position, and they need a character string for a name or a
label. You can even define some of the code associated with CircuitThings – for
instance, you could define functions that access coordinate data.

Wires are special kinds of CircuitThings. It is easy to define them completely. They
have a few more data fields (e.g. identifiers of the components that they join, or maybe
coordinates for their endpoints). It is also easy to define completely how they perform
all the functions like saving their data to file or drawing themselves.

Components are a different specialization of CircuitThing. Components are
CircuitThings that will have to be analyzed by the circuit simulation component of the
program. So they will have data attributes like "resistance", and they may have many
additional forms of behaviour as required in the simulation.

Similarities among
classes

A class hierarchy

An pure "abstract"
class

Concrete class
TextParagraph

Partially abstract
class CircuitThing

Concrete class Wire

Partially abstract
class Component

Discovering similarities 825

Thing

TextParagraph
CircuitThing

Wire Component

Battery Switch Resistor

Figure 23.5 Similarities among classes.

Naturally, Battery, Switch, and Resistor define different specializations of this idea
of Component. Each will have its unique additional data attributes. Each can define a
real implementation for functions like Draw().

The benefits of a class hierarchy

OK, such a hierarchy provides a nice conceptual structure when talking about a
program but how does it really help?

One thing that you immediately gain is consistency. In the original design sketch,
text paragraphs, batteries and so forth all had some way of defining that these data
elements could display themselves, save themselves to file and so forth. But each class
was slightly different; thus we had TextParagraph::Save(), Battery::Put() and
Resistor:: WriteTo(). The hierarchy allows us to capture the concept of
"storability" by specifying in class Thing the ability WriteTo(). While each

Concrete classes
Battery, Switch, …

Consistency

826 Intermediate class

specialization performs WriteTo() in a unique way, they can at least be consistent in
their names for this common behaviour. But consistency of naming is just a beginning.

If you exploit such similarities, you can greatly simplify the design of the overall
application as can be seen by re-examining some of the tasks that a Document must
perform.

While you might want separate lists of the various specialized Components (as this
might be necessary for the circuit simulation code), you could change Document so that
it stores data using a single thingList instead of separate paragraphList,
BatteriesList and so forth . This would allow simplification of functions like
DoSave():

Document::DoSave(…)
write thingList.Length()
iterator i1(thingList)
for i1.First(), !i1.IsDone() do

thing_ptr = i1.CurrentItem();
thing_ptr->WriteTo()
i1.Next();

Document::Draw
iterator i1(thingList)
for i1.First(), !i1.IsDone() do

thing_ptr = i1.CurrentItem();
thing_ptr->Draw()
i1.Next();

Document::LetUserMoveSomething(Point mousePoint)
iterator i1(thingList)
Thing *pt = NULL;
for i1.First(), !i1.IsDone() do

thing_ptr = i1.CurrentItem();
Rectangle r = thing_ptr ->Area()
if(r.Contains(mousePoint) pt = thing_ptr ;
i1.Next();

if(pt != NULL)
pt->TrackMouse()
return

The code is no longer obscured by all the different special cases. The revised code is
shorter and much more intelligible.

Note also how the revised Document no longer needs to know about the different
kinds of circuit component. This would prove useful later if you decided to have
another component (e.g. class Voltmeter); you wouldn't need to change the code of
Document in order to accommodate this extension.

The most significant benefit is the resulting simplification of design, and
simultaneous acquisition of extendability. But you may gain more. Sometimes, you
can define the code for a particular behaviour at the level of a partially abstract class.
Thus, you should be able to define the access function for getting a CircuitThing's

Design
simplifications

Functions exploiting
similarities

Extendability

Code sharing

Discovering similarities 827

identifier at the level of class CircuitThing while class Component can define the code
for accessing a Component's electrical resistance. Defining these functions at the level
of the partially abstract classes saves you from writing very similar functions for each
of the concrete classes like Battery, Resistor, etc.

23.6.2 DEFINING CLASS HIERARCHIES IN C++

C++ allows you to define such hierarchical relations amongst classes. So, there is a
way of specifying "class Thing represents the abstract concept of a storable, drawable,
moveable data element", "class TextParagraph is a kind of Thing that looks after text
and …".

You start by defining the "base class", in this case that is class Thing which is the
base class for the entire hierarchy:

class Thing {
public:

virtual ~Thing() { }
/* Disk I/O */
virtual void ReadFrom(istream& i s) = 0;
virtual void WriteTo(ostream& os) const = 0;
/* Graphics */
virtual void Draw() const = 0;
/* mouse interactions */
virtual void DoDialog() = 0; // For double click
virtual void TrackMouse() = 0; // Mouse select and drag
virtual Rect Area() const = 0;
…

};

Class Thing represents just an idea of a storable, drawable data element and so naturally
i t is simply a list of function names.

The situation is a little odd. We know that all Things can draw themselves, but we
can't say how. The ability to draw is common, but the mechanism depends very much
on the specialized nature of the Thing that is asked to draw itself. In class Thing, we
have to be able to say "all Things respond to a Draw() request, specialized Thing
subclasses define how they do this".

This is what the keyword virtual and the odd = 0 notation are for.
Roughly, the keyword virtual identifies a function that a class wants to define in

such a way that subclasses may later extend or otherwise modify the definition. The =0
part means that we aren't prepared to offer even a default implementation. (Such
undefined virtual functions are called "pure virtual functions".)

In the case of class Thing, we can't provide default definitions for any of the
functions like Draw(), WriteTo() and so forth. The implementations of these
functions vary too much between different subclasses. This represents an extreme case;

Base class

virtual keyword and
=0 definition

828 Intermediate class

often you can provide a default implementation for a virtual function. This default
definition describes what "usually" should be done. Subclasses that need to something
different can replace, or "override", the default definition.

The destructor, ~Thing(), does have a definition: virtual ~Thing() { }. The
definition is an empty function; basically, it says that by default there is no tidying up to
be done when a Thing is deleted. The destructor is virtual. Subclasses of class
Thing may be resource managers (e.g. a subclass might allocate space for an object
label as a separate character array in the heap). Such specialized Things will need
destructors that do some cleaning up.

A C++ compiler prevents you from having variables of type Thing:

Thing aThing; // illegal, Thing is an abstraction

This is of course appropriate. You can't have Things. You can only have instances of
specialized subclasses. (This is standard whenever you have a classification hierarchy
with abstract classes. After all, you never see "mammals" walking around, instead you
encounter dogs, cats, humans, and horses – i.e. instances of specialized subclasses of
class mammal). However, you can have variables that are Thing* pointers, and you
can define functions that take Thing& reference arguments:

Thing *first_thing;

The pointer first_thing can hold the address of (i.e. point to) an instance of class
TextParagraph, or it might point to a Wire object, or point to a Battery object.

Once you have declared class Thing, you can declare classes that are "based on" or
"derived from" this class:

class TextParagraph : public Thing {
TextParagraph(Point topleft);
virtual ~TextParagraph();
/* Disk I/O */
virtual void ReadFrom(istream& is);
virtual void WriteTo(ostream& os) const;
/* Graphics */
virtual void Draw() const;
/* mouse interactions */
virtual void DoDialog(); // For double click
virtual void TrackMouse(); // Mouse select and drag
virtual Rect Area() const;
// Member functions that are unique to TextParagraphs
void EditText();
…

private:
// Data needed by a TextParagraph
Point fTopLeft;
char *fText;
…

virtual destructor

Thing* variables

Derived classes

Public derivation tag

Defining class hierarchies 829

};

class CircuitThing : public Thing {
CircuitThing(int ident, Point where);
virtual ~CircuitThing();
…
/* Disk I/O */
virtual void ReadFrom(istream& is);
virtual void WriteTo(ostream& os) const;
…
// Additional member functions that define behaviours
// characteristic of all kinds of CircuitThing
int GetId() const { return this->fId }
virtual Rect Area() const {

return Rect(
this->flocation.x - 8, this->flocation.y - 8,
this->flocation.x + 8, this->flocation.y + 8);
}

virtual double Current() const = 0;
…

protected:
// Data needed by a CircuitThing
int fId;
Point flocation;
char *fLabel;
…

};

In later studies you will learn that there are a variety of different ways that
"derivation" can be used to build up class hierarchies. Initially, only one form is
important. The important form is "public derivation". Both TextParagraph and
CircuitThing are "publicly derived" from class Thing:

class TextParagraph : public Thing {
…

};

class CircuitThing : public Thing {
…

};

Public derivation acknowledges that both TextParagraph and CircuitThing are
specialized kinds of Things and so code "using Things" will work with
TextParagraphs or CircuitThings. This is exactly what we want for the example
where the Document object has a list of "pointers to Things" and all its code is of the
form thing_ptr->DoSomething().

We need actual TextParagraph objects. This class has to be "concrete". The class
declaration has to be complete, and all the member functions will have to be defined.

Protected access
specifier

Different forms of
derivation

public derivation

TextParagraph, a
concrete class

830 Intermediate class

Naturally, the class declaration starts with the constructor(s) and destructor. Then it
will have to repeat the declarations from class Thing; so we again get functions like
Draw() being declared. This time they don't have those = 0 definitions. There will
have to be definitions provided for each of the functions. (It is not actually necessary to
repeat the keyword virtual; this keyword need only appear in the class that introduces
the member function. However, it is usually simplest just to "copy and paste" the block
of function declarations and so have the keyword.) Class TextParagraph will
introduce some additional member functions describing those behaviours that are
unique to TextParagraphs. Some of these additional functions will be in the public
interface; most would be private. Class TextParagraph would also declare all the
private data members needed to record the data possessed by a TextParagraph object.

Class CircuitThing is an in between case. It is not a pure abstraction like Thing,
nor yet is it a concrete class like TextParagraph. Its main role is to introduce those
member functions needed to specify the behaviours of all different kinds of
CircuitThing and to describe those data members that are possessed by all kinds of
CircuitThing.

Class CircuitThing cannot provide definitions for all of those pure virtual
functions inherited from class Thing; for instance it can't do much about Draw(). It
should not repeat the declarations of those functions for which it can't give a definition.
Virtual functions only get re-declared in those subclasses where they are finally defined.

Class CircuitThing can specify some of the processing that must be done when a
CircuitThing gets written to or read from a file on disk. Obviously, it cannot specify
everything; each specialized subclass has its own data to save. But CircuitThing can
define how to deal with the common data like the identifier, location and label:

void CircuitThing::WriteTo(ostream& os) const
{ // keyword virtual not repeated in definition

os << fId << endl;
os << fLocation.x << " " << fLocation.y << endl;
os << fLabel << endl;

}

void CircuitThing::ReadFrom(istream& is)
{

is >> fId;
is >> fLocation.x >> fLocation.y;
char buff[256];
is.getline(buff,255,'\n');
delete [] fLabel; // get rid of existing label
fLabel = new char[strlen(buff) + 1];
strcpy(fLabel, buff);

}

These member functions can be used by the more elaborate WriteTo() and
ReadFrom() functions that will get defined in subclasses. (Note the deletion of fLabel

CircuitThing, a
partially implemented

abstract class

Defining class hierarchies 831

and allocation of a new array; this is another of those places where it is easy to get a
memory leak.)

The example illustrates that there are three possibilities for additional member
functions:

int GetId() const { return this->fId }
virtual Rect Area() const {

return Rect(
this->flocation.x - 8, this->flocation.y - 8,
this->flocation.x + 8, this->flocation.y + 8);
}

virtual double Current() const = 0;

Function GetId() is not a virtual function. Class CircuitThing defines an
implementation (return the fId identifier field). Because the function is not virtual,
subclasses of CircuitThing cannot change this implementation. You use this style
when you know that there is only one reasonable implementation. for a member
function.

Function Area() has a definition. It creates a rectangle of size 16x16 centred
around the fLocation point that defines the centre of a CircuitThing. This might
suit most specialized kinds of CircuitThing; so, to economise on coding, this default
implementation can be defined at this level in the hierarchy. Of course, Area() is still
a virtual function because that was how it was specified when first introduced in class
Thing ("Once a virtual function, always a virtual function"). Some subclasses, e.g.
class Wire, might need different definitions of Area(); they can override this default
definition by providing their own replacement.

Function Current() is an additional pure virtual function. The circuit simulation
code will require all circuit elements know the current that they have flowing. But the
way this gets calculated would be class specific.

Class CircuitThing declares some of the data members – fId, fLabel, and
fLocation. There is a potential difficulty with these data members.

These data members should not be public; you don't want the data being accessed
from anywhere in the program. But if the data members are declared as private, they
really are private, they will only be accessible from the code of class CircuitThing
itself. But you can see that the various specialized subclasses are going to have
legitimate reasons for wanting to use these variables. For example, all the different
versions of Draw() are going to need to know where the object is located in order to do
the correct drawing operations.

You can't use the "friend" mechanism to partially relax the security. When you
define class CircuitThing you won't generally know what the subclasses will be so
you can't nominate them as friends.

There has to be a mechanism to prevent external access but allow access by
subclasses– so there is. There is a third level of security on members. In addition to
public and private, you can declare data members and member functions as being

A non-virtual
member function

A defined, virtual
member function

Another pure virtual
function

Access to members

"protected" data

832 Intermediate class

protected. A protected member is not accessible from the main program code but
can be accessed in the member functions of the class declaring that member, or in the
member functions of any derived subclass.

Here, variables like fLocation should be defined as protected. Subclasses can
then use the fLocation data in their Draw() and other functions. (Actually, it is
sometimes better to keep the data members private and provide extra protected access
functions that allow subclasses to get and set the values of these data members. This
technique can help when debugging complex programs involving elaborate class
hierarchies).

Once the definition of class CircuitThing is complete, you have to continue with
its derived classes: class Wire, and class Component:

class Wire : public CircuitThing {
public:

Wire(int startcomponent, int endcomponent, Point p1, Point p2);
~Wire();
/* Disk I/O */
virtual void ReadFrom(istream& is);
virtual void WriteTo(ostream& os) const;
/* Graphics */
virtual void Draw() const;
/* mouse interactions */
virtual void DoDialog(); // For double click
virtual void TrackMouse(); // Mouse select and drag
virtual Rect Area() const;
virtual double Current() const;
…
int FirstEndId() { return this->fFirstEnd; }
…

private:
int fFirstEnd;
…

};

Class Wire is meant to be a concrete class; the program will use instances of this class.
So it has to define all member functions.

The class repeats the declarations for all those virtual functions, declared in
classes from which it is derived, for which it wants to provide definitions (or to change
existing definitions). Thus class Wire will declare the functions like Draw() and
Current(). Class Wire also declares the ReadFrom() and WriteTo() functions as
these have to be redefined to accommodate additional data, and it declares Area() as it
wants to use a different size.

Class Wire would also define additional member functions characterising its unique
behaviours and would add some data members. The extra data members might be
declared as private or protected. You would declare them as private if you knew
that no-one was ever going to try to invent subclasses based on your class Wire. If you
wanted to allow for the possibility of specialized kinds of Wire, you would make these

Thing declared
behaviours

CircuitThing
behaviours

Own unique
behaviours

Defining class hierarchies 833

extra data members (and functions) protected. You would then also have to define the
destructor as virtual.

The specification of the problem might disallow the user from dragging a wire or
clicking on a wire to open a dialog box. This would be easily dealt with by making the
Area() function of a Wire return a zero sized rectangle (rather than the fixed 16x16
rectangle used by other CircuitThings):

Rect Wire::Area() const
{

return Rect(0, 0, 0, 0);
}

(The program identifies the Thing being selected by testing whether the mouse was
located in the Thing's area; so if a Thing's area is zero, it can never be selected.) This
definition of Area() overrides that provided by CircuitThing.

A Wire has to save all the standard CircuitThing data to file, and then save its
extra data. This can be done by having a Wire::WriteTo() function that makes use of
the inherited function:

void Wire::WriteTo(ostream& os)
{

CircuitThing::WriteTo(os);
os << fFirstEnd << " " << fSecondEnd << endl;
…

}

This provides another illustration of how inheritance structures may lead to small
savings of code. All the specialized subclasses of CircuitThing use its code to save
the identifier, label, and location.

23.6.3 BUT HOW DOES IT WORK?!

The example hierarchy illustrates that you can define a concept like Thing that can save
itself to disk, and you can define many different specific classes derived from Thing
that have well defined implementations – TextParagraph::WriteTo(), Battery::
WriteTo(), Wire::WriteTo(). But the code for Document would be something like:

void Document::DoSave(ostream& out)
{

out << thingList.Length() << endl;

iterator i1(thingList);
i1.First();
while(!i1.IsDone()) {

Thing* thing_ptr = (Thing*) i1.CurrentItem();

834 Intermediate class

thing_ptr ->WriteTo(out);
i1.Next();
}

}

The code generated for

thing_ptr ->WriteTo()

isn't supposed to invoke function Thing::WriteTo(). After all, this function doesn't
exist (it was defined as = 0). Instead the code is supposed to invoke the appropriate
specialized version of WriteTo().

But which is the appropriate function? That is going to depend on the contents of
thingList. The thingList will contain pointers to instances of class TextParagraph,
class Battery, class Switch and so forth. These will be all mixed together in whatever
order the user happened to have added them to the Document. So the appropriate
function might be Battery::WriteTo() for the first Thing in the list,
Resistor::WriteTo() for the second list element, and Wire::WriteTo() for the
third. You can't know until you are writing the list at run-time.

The compiler can't work things out at compile time and generate the instruction
sequence for a normal subroutine call. Instead, it has to generate code that works out
the correct routine to use at run time.

The generated code makes use of tables that contain the addresses of functions.
There is a table for each class that uses virtual functions; a class's table contains the
addresses of its (virtual) member functions. The table for class Wire would, for
example, contain pointers to the locations in the code segment of each of the functions
Wire::ReadFrom(), Wire::WriteTo(), Wire::Draw() and so forth. Similarly, the
virtual table for class Battery will have the addresses of the functions
Battery::ReadFrom() and so on. (These tables are known as "virtual tables".)

In addition to its declared data members, an object that is an instance of a class that
uses virtual functions will have an extra pointer data member. This pointer data
member holds the address of the virtual table that has the addresses of the functions that
are to be used in association with that object. Thus every Wire object has a pointer to
the Wire virtual table, and every Battery object has a pointer to the Battery virtual
table. A simple version of the scheme is illustrated in Figure 23.6

The instruction sequence generated for something like:

thing_ptr ->WriteTo()

involves first using the link from the object pointed to by thing_ptr to get the location
of the table describing the functions. Then, the required function, WriteTo(), is
"looked up" in this table to find where it is in memory. Finally, a subroutine call is
made to the actual WriteTo() function. Although it may sound complex, the process
requires only three or four instructions!

virtual tables

How inheritance works: dynamic binding 835

Code segment

Heap

"Virtual Tables"

Wire1 Wire2 Text
1

Battery
1

Text's
code

Wire's
code

Battery's
code

pointers to code
for functions

(pointers link objects to
appropriate virtual table)

Figure 23.6 Virtual tables.

Function lookup at run time is referred to as "dynamic binding". The address of the
function that is to be called is determined ("bound") while the program is running
(hence "dynamically"). Normal function calls just use the machine's JSR (jump to
subroutine) instruction with the function's address filled in by the compiler or linking
loader. Since this is done before the program is running, the normal mechanism of
fixing addresses for subroutine calls is said to use static binding (the address is fixed,
bound, before the program is moving, or while it is static).

It is this "dynamic binding" that makes possible the simplification of program
design. Things like Document don't have to have code to handle each special case.
Instead the code for Document is general, but the effect achieved is to invoke different
special case functions as required.

Another term that you will find used in relation to these programming styles is
"polymorphism". This is just an anglicisation of two Greek words – poly meaning
many, and morph meaning shape. A Document owns a list of Things; Things have
many different shapes – some are text paragraphs, others are wires. A pointer like
thing_ptr is a "polymorphic" pointer in that the thing it points to may, at different
times, have different shapes.

Dynamic binding

Polymorphism

836 Intermediate class

23.6.4 MULTIPLE INHERITANCE

You are not limited to single inheritance. A class can be derived from a number of
existing base classes.

Multiple inheritance introduces all sorts of complexities. Most uses of multiple
inheritance are inappropriate for beginners. There is only one form usage that you
should even consider.

Multiple inheritance can be used as a "type composition" device. This is just a
systematic generalization of the previous example where we had class Thing that
represented the type "a drawable, storable, editable data item occupying an area of a
window".

Instead of having class Thing as a base class with all these properties, we could
instead factor them into separate classes:

class Storable {
public:

virtual ~Storable() { }
virtual void WriteTo(ostream&) const = 0;
virtual void ReadFrom(istream&) const = 0;
…

};

void Drawable {
public:

virtual ~Drawable() { }
virtual void Draw() const = 0;
virtual Rect Area() const = 0;
…

};

This allows "mix and match". Different specialized subclasses can derive from chosen
base classes. As a TextParagraph is to be both storable and drawable, it can inherit
from both base classes:

class TextParagraph : public Storable, public Drawable {
…
};

You might have another class, Decoration, that provides some pretty outline or
shadow effect for a drawable item. You don't want to store Decoration objects in a
file, they only get used while the program is running. So, the Decoration class only
inherits from Drawable:

class Decoration : public Drawable {
…
};

Multiple Inheritance 837

As additional examples, consider class Printable and class Comparable:

class Printable {
public:

virtual ~Printable() { }
virtual void PrintOn(ostream& out) const = 0;

};

ostream& operator<<(ostream& o, const Printable& p)
{ p.PrintOn(o); return o; }
ostream& operator<<(ostream& o, const Printable *p_ptr)
{ p_ptr->PrintOn(o); return o; }

class Comparable {
public:

virtual ~Comparable() { }
virtual int Compare(const Comparable* ptr) const = 0;
int Compare(const Comparable& other) const

{ return Compare(&other); }

int operator==(const Comparable& other) const
{ return Compare(other) == 0; }

int operator!=(const Comparable& other) const
{ return Compare(other) != 0; }

int operator<(const Comparable& other) const
{ return Compare(other) < 0; }

int operator<=(const Comparable& other) const
{ return Compare(other) <= 0; }

int operator>(const Comparable& other) const
{ return Compare(other) > 0; }

int operator>=(const Comparable& other) const
{ return Compare(other) >= 0; }

};

Class Printable packages the idea of a class with a PrintOn() function and
associated global operator<<() functions. Class Comparable characterizes data items
that compare themselves with similar data items. It declares a Compare() function that
is a little like strcmp(); it should return -1 if the first item is smaller than the second,
zero if they are equal, and 1 if the first is greater. The class also defines a set of
operator functions, like the "not equals function" operator !=() and the "greater than"
function operator>(); all involve calls to the pure virtual Compare() function with
suitable tests on the result code. (The next chapter has some example Compare()
functions.)

As noted earlier, another possible pure virtual base class would be class Iterator:

class Iterator {
public:

virtual ~Iterator() { }
virtual void First(void) = 0;

838 Intermediate class

virtual void Next(void) = 0;
virtual int IsDone(void) const = 0;
virtual void *CurrentItem(void) const = 0;

};

This would allow the creation of a hierarchy of iterator classes for different kinds of
data collection. Each would inherit from class Iterator.

Now inventing classes like Storable, Comparable, and Drawable is not a task for
beginners. You need lots of experience before you can identify widely useful abstract
concepts like the concept of storability. However you may get to work with library
code that has such general abstractions defined and so you may want to define classes
using multiple inheritance to combine different data types.

What do you gain from such use of inheritance as a type composition device?
Obviously, it doesn't save you any coding effort. The abstract classes from which

you multiply inherit are exactly that – abstract. They have no data members. All, or
most, of their member functions are pure virtual functions with no definitions. If any
member functions are defined, then as in the case of class Comparable, these definitions
simply provide alternative interfaces to one of the pure virtual functions.

You inherit, but the inheritance is empty. You have to define the code.
The advantage is not for the implementor of a subclass. Those who benefit are the

maintenance programmers and the designers of the overall system. They gain because
if a project uses such abstract classes, the code becomes more consistent, and easier to
understand. The maintenance programmer knows that any class whose instances are to
be stored to file will use the standard functions ReadFrom() and WriteTo(). The
designer may be able to simplify the design by using collections of different kinds of
objects as was done with the Document example.

23.6.5 USING INHERITANCE

There are many further complexities related to inheritance structures. One day you may
learn of things like "private inheritance", "virtual base classes", "dominance" and
others. You will discover what happens if a subclass tries to "override" a function that
was not declared as virtual in the class that initially declared it.

But these are all advanced, difficult features.
The important uses of inheritance are those illustrated – capturing commonalities to

simplify design, and using (multiple) inheritance as a type composition device. These
uses will be illustrated in later examples. Most of Part V of this text is devoted to
simple uses of inheritance.

